Elangovan et al., 2008 - Google Patents
Intermediate Temperature Solid Oxide Fuel Cell DevelopmentElangovan et al., 2008
View PDF- Document ID
- 2227864666632158785
- Author
- Elangovan S
- Barnett S
- Haile S
- Publication year
External Links
Snippet
Solid oxide fuel cells (SOFCs) are high efficiency energy conversion devices. Present materials set, using yttria stabilized zirconia (YSZ) electrolyte, limit the cell operating temperatures to 800 C or higher. It has become increasingly evident however that lowering …
- 239000000446 fuel 0 title abstract description 14
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
- Y02E60/52—Fuel cells characterised by type or design
- Y02E60/521—Proton Exchange Membrane Fuel Cells [PEMFC]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
- Y02E60/52—Fuel cells characterised by type or design
- Y02E60/525—Solid Oxide Fuel Cells [SOFC]
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/124—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
- H01M8/1246—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9016—Oxides, hydroxides or oxygenated metallic salts
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/1213—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
- H01M8/1226—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material characterised by the supporting layer
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8878—Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
- H01M4/8882—Heat treatment, e.g. drying, baking
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9041—Metals or alloys
- H01M4/905—Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
- H01M4/9066—Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M2004/8678—Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Nguyen et al. | Preparation and evaluation of doped ceria interlayer on supported stabilized zirconia electrolyte SOFCs by wet ceramic processes | |
Ferchaud et al. | High performance praseodymium nickelate oxide cathode for low temperature solid oxide fuel cell | |
US9343746B2 (en) | Advanced materials and design for low temperature SOFCs | |
Taroco et al. | Ceramic materials for solid oxide fuel cells | |
US7709124B2 (en) | Direct hydrocarbon fuel cells | |
Shimada et al. | Performance comparison of perovskite composite cathodes with BaZr0. 1Ce0. 7Y0. 1Yb0. 1O3–δ in anode-supported protonic ceramic fuel cells | |
Guo et al. | Electrical and stability performance of anode-supported solid oxide fuel cells with strontium-and magnesium-doped lanthanum gallate thin electrolyte | |
US20060177706A1 (en) | Direct hydrocarbon fuel cells | |
KR20130099704A (en) | Functional layer material for solid oxide fuel cell, functional layer manufactured using the material and solid oxide fuel cell including the functional layer | |
WO2003094268A2 (en) | Cerium-modified doped strontium titanate composition for solid oxide fuel cell anodes and electrodes for other electrochemical devices | |
KR20130123188A (en) | Material for solid oxide fuel cell, and cathode for solid oxide fuel cell and solid oxide fuel cell including the material | |
KR20140048738A (en) | Cathode composite for solid oxide fuel cell, method for preparing the same and solid oxide fuel cell including the same | |
US20120308915A1 (en) | Cathode material for fuel cell, cathode including the cathode material, solid oxide fuel cell including the cathode | |
Guo et al. | Electrochemical evaluation of La0. 6Sr0. 4Co0. 8Fe0. 2O3− δ–La0. 9Sr0. 1Ga0. 8Mg0. 2O3− δ composite cathodes for La0. 9Sr0. 1Ga0. 8Mg0. 2O3− δ electrolyte SOFCs | |
KR20140057080A (en) | Cathode for solid oxide fuel cell, method for preparing the same and solid oxide fuel cell including the same | |
Choi et al. | Development of solid oxide cells by co-sintering of GDC diffusion barriers with LSCF air electrode | |
EP3309882B1 (en) | Cathode composition, cathode and fuel cell including same | |
Teng et al. | Designing one-step co-assembled Pr1. 95Ce0. 05CuO4-Ce0. 8Pr0. 2O1. 9 composite cathode with extraordinary oxygen reduction activity for solid oxide fuel cells | |
US7482077B2 (en) | Direct hydrocarbon fuel cells | |
KR20120135463A (en) | Cathode material for fuel cell, and cathode for fuel cell and solid oxide fuel cell including the material | |
KR20120123639A (en) | Cathode material for fuel cell, cathode for fuel cell and solid oxide fuel cell including the material | |
US7758992B2 (en) | Copper-substituted perovskite compositions for solid oxide fuel cell cathodes and oxygen reduction electrodes in other electrochemical devices | |
KR101698210B1 (en) | Solid oxide electrolyte, solid oxide fuel cell containing solid oxide electrolyte, and preparation method thereof | |
Elangovan et al. | Intermediate Temperature Solid Oxide Fuel Cell Development | |
KR101748553B1 (en) | Solid oxide electrolyte, solid oxide fuel cell containing solid oxide electrolyte, and preparation method thereof |