Kaur et al., 2021 - Google Patents
Seismic data interpolation using deep learning with generative adversarial networksKaur et al., 2021
- Document ID
- 2140958360443848689
- Author
- Kaur H
- Pham N
- Fomel S
- Publication year
- Publication venue
- Geophysical Prospecting
External Links
Snippet
We propose an algorithm for seismic trace interpolation using generative adversarial networks, a type of deep neural network. The method extracts feature vectors from the training data using self‐learning and does not require any pre‐processing to create the …
- 230000001537 neural 0 abstract description 17
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. analysis, for interpretation, for correction
- G01V1/36—Effecting static or dynamic corrections on records, e.g. correcting spread; Correlating seismic signals; Eliminating effects of unwanted energy
- G01V1/364—Seismic filtering
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. analysis, for interpretation, for correction
- G01V1/282—Application of seismic models, synthetic seismograms
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. analysis, for interpretation, for correction
- G01V1/30—Analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/60—Analysis
- G01V2210/67—Wave propagation modeling
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/60—Analysis
- G01V2210/66—Subsurface modeling
- G01V2210/665—Subsurface modeling using geostatistical modeling
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/50—Corrections or adjustments related to wave propagation
- G01V2210/56—De-ghosting; Reverberation compensation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/50—Corrections or adjustments related to wave propagation
- G01V2210/57—Trace interpolation or extrapolation, e.g. for virtual receiver; Anti-aliasing for missing receivers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/60—Analysis
- G01V2210/61—Analysis by combining or comparing a seismic data set with other data
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V99/00—Subject matter not provided for in other groups of this subclass
- G01V99/005—Geomodels or geomodelling, not related to particular measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/38—Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/30—Noise handling
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/16—Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
- G01V1/18—Receiving elements, e.g. seismometer, geophone or torque detectors, for localised single point measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/003—Seismic data acquisition in general, e.g. survey design
- G01V1/005—Seismic data acquisition in general, e.g. survey design with exploration systems emitting special signals, e.g. frequency swept signals, pulse sequences or slip sweep arrangements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/18—Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/12—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/38—Processing data, e.g. for analysis, for interpretation, for correction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kaur et al. | Seismic data interpolation using deep learning with generative adversarial networks | |
Yu et al. | Deep learning for denoising | |
Kaur et al. | Seismic ground‐roll noise attenuation using deep learning | |
Oropeza et al. | Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis | |
Jia et al. | What can machine learning do for seismic data processing? An interpolation application | |
Van den Ende et al. | A self-supervised deep learning approach for blind denoising and waveform coherence enhancement in distributed acoustic sensing data | |
Kaur et al. | Improving the resolution of migrated images by approximating the inverse Hessian using deep learning | |
Kong et al. | Deep prior-based unsupervised reconstruction of irregularly sampled seismic data | |
Mousavi et al. | Applications of deep neural networks in exploration seismology: A technical survey | |
Wang et al. | Fast dictionary learning for high-dimensional seismic reconstruction | |
Yang et al. | Denoising of distributed acoustic sensing data using supervised deep learning | |
Wei et al. | Reconstruction of irregular missing seismic data using conditional generative adversarial networks | |
Guo et al. | Prestack seismic inversion based on anisotropic Markov random field | |
Zhang et al. | 3D simultaneous seismic data reconstruction and noise suppression based on the curvelet transform | |
Saad et al. | Unsupervised deep learning for single-channel earthquake data denoising and its applications in event detection and fully automatic location | |
Cavalcante et al. | Low‐rank seismic data reconstruction and denoising by CUR matrix decompositions | |
Yang et al. | Deep learning with fully convolutional and dense connection framework for ground roll attenuation | |
Kong et al. | A deep prior convolutional autoencoder for seismic data interpolation | |
Turco et al. | Geostatistical interpolation of non-stationary seismic data | |
Sun et al. | Generating complete synthetic datasets for high‐resolution amplitude‐versus‐offset attributes deep learning inversion | |
Zu et al. | Robust local slope estimation by deep learning | |
Zhu et al. | Seismic data reconstruction based on attention U-net and transfer learning | |
Han et al. | Consistent convolution kernel design for missing shots interpolation using an improved U‐net | |
Wu et al. | Seismic data interpolation using deeply supervised U‐Net++ with natural seismic training sets | |
US12013508B2 (en) | Method and system for determining seismic processing parameters using machine learning |