Liu et al., 2014 - Google Patents
CUSHAW3: sensitive and accurate base-space and color-space short-read alignment with hybrid seedingLiu et al., 2014
View HTML- Document ID
- 2041873819173475081
- Author
- Liu Y
- Popp B
- Schmidt B
- Publication year
- Publication venue
- PloS one
External Links
Snippet
The majority of next-generation sequencing short-reads can be properly aligned by leading aligners at high speed. However, the alignment quality can still be further improved, since usually not all reads can be correctly aligned to large genomes, such as the human genome …
- 238000010899 nucleation 0 title abstract description 19
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/22—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for sequence comparison involving nucleotides or amino acids, e.g. homology search, motif or SNP [Single-Nucleotide Polymorphism] discovery or sequence alignment
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/18—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for functional genomics or proteomics, e.g. genotype-phenotype associations, linkage disequilibrium, population genetics, binding site identification, mutagenesis, genotyping or genome annotation, protein-protein interactions or protein-nucleic acid interactions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30289—Database design, administration or maintenance
- G06F17/30303—Improving data quality; Data cleansing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/28—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for programming tools or database systems, e.g. ontologies, heterogeneous data integration, data warehousing or computing architectures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/30—Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
- G06F19/34—Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
- G06F19/345—Medical expert systems, neural networks or other automated diagnosis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/14—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for phylogeny or evolution, e.g. evolutionarily conserved regions determination or phylogenetic tree construction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/24—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for machine learning, data mining or biostatistics, e.g. pattern finding, knowledge discovery, rule extraction, correlation, clustering or classification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/16—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for molecular structure, e.g. structure alignment, structural or functional relations, protein folding, domain topologies, drug targeting using structure data, involving two-dimensional or three-dimensional structures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Systems or methods specially adapted for a specific business sector, e.g. utilities or tourism
- G06Q50/10—Services
- G06Q50/22—Health care, e.g. hospitals; Social work
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/40—Transformations of program code
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | CUSHAW3: sensitive and accurate base-space and color-space short-read alignment with hybrid seeding | |
Rakocevic et al. | Fast and accurate genomic analyses using genome graphs | |
Dilthey et al. | Strain-level metagenomic assignment and compositional estimation for long reads with MetaMaps | |
Tini et al. | Multi-omics integration—a comparison of unsupervised clustering methodologies | |
van Kempen et al. | Foldseek: fast and accurate protein structure search | |
Luo et al. | SOAP3-dp: fast, accurate and sensitive GPU-based short read aligner | |
Hatem et al. | Benchmarking short sequence mapping tools | |
Liu et al. | CUSHAW: a CUDA compatible short read aligner to large genomes based on the Burrows–Wheeler transform | |
Li et al. | Fast and accurate long-read alignment with Burrows–Wheeler transform | |
Ebersberger et al. | HaMStR: profile hidden markov model based search for orthologs in ESTs | |
Wright et al. | From defaults to databases: parameter and database choice dramatically impact the performance of metagenomic taxonomic classification tools | |
Blom et al. | Exact and complete short-read alignment to microbial genomes using Graphics Processing Unit programming | |
Alser et al. | From molecules to genomic variations: Accelerating genome analysis via intelligent algorithms and architectures | |
Torri et al. | Next generation sequence analysis and computational genomics using graphical pipeline workflows | |
Lee et al. | Combining accurate tumor genome simulation with crowdsourcing to benchmark somatic structural variant detection | |
Mirarab et al. | FastSP: linear time calculation of alignment accuracy | |
Singh et al. | SPOT-Contact-LM: improving single-sequence-based prediction of protein contact map using a transformer language model | |
Firtina et al. | BLEND: a fast, memory-efficient and accurate mechanism to find fuzzy seed matches in genome analysis | |
Sirén et al. | Genotyping common, large structural variations in 5,202 genomes using pangenomes, the Giraffe mapper, and the vg toolkit | |
Prezza et al. | SNPs detection by eBWT positional clustering | |
Ochoa et al. | Beyond the E-value: stratified statistics for protein domain prediction | |
Loka et al. | Reliable variant calling during runtime of Illumina sequencing | |
Wilton et al. | Performance optimization in DNA short-read alignment | |
Ramachandran et al. | HELLO: improved neural network architectures and methodologies for small variant calling | |
Manfredi et al. | ISPRED-SEQ: Deep neural networks and embeddings for predicting interaction sites in protein sequences |