Bian et al., 2018 - Google Patents
A novel lithium difluoro (oxalate) borate and lithium hexafluoride phosphate dual-salt electrolyte for Li-excess layered cathode materialBian et al., 2018
- Document ID
- 2036343616358954555
- Author
- Bian X
- Ge S
- Pang Q
- Zhu K
- Wei Y
- Zou B
- Du F
- Zhang D
- Chen G
- Publication year
- Publication venue
- Journal of Alloys and Compounds
External Links
Snippet
The electrochemical properties of a Li-excess Li 1.18 Ni 0.15 Co 0.15 Mn 0.52 O 2 cathode material in a lithium difluoro (oxalate) borate (LiDFOB, 20 wt%) and lithium hexafluoride phosphate (LiPF 6, 80 wt%) dual-salt electrolyte are investigated. The use of a dual-salt …
- 239000003792 electrolyte 0 title abstract description 123
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/12—Battery technology
- Y02E60/122—Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4235—Safety or regulating additives or arrangements in electrodes, separators or electrolyte
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xu et al. | Research progress of fluorine-containing electrolyte additives for lithium ion batteries | |
Patra et al. | Moderately concentrated electrolyte improves solid–electrolyte interphase and sodium storage performance of hard carbon | |
Bian et al. | A novel lithium difluoro (oxalate) borate and lithium hexafluoride phosphate dual-salt electrolyte for Li-excess layered cathode material | |
Rong et al. | Tris (trimethylsilyl) borate (TMSB) as a cathode surface film forming additive for 5 V Li/LiNi0. 5Mn1. 5O4 Li-ion cells | |
Zheng et al. | Li [(FSO2)(n-C4F9SO2) N] versus LiPF6 for graphite/LiCoO2 lithium-ion cells at both room and elevated temperatures: A comprehensive understanding with chemical, electrochemical and XPS analysis | |
Ha et al. | Using a lithium bis (oxalato) borate additive to improve electrochemical performance of high-voltage spinel LiNi0. 5Mn1. 5O4 cathodes at 60° C | |
Tarnopolskiy et al. | Beneficial influence of succinic anhydride as electrolyte additive on the self-discharge of 5 V LiNi0. 4Mn1. 6O4 cathodes | |
Zou et al. | Electrolyte therapy for improving the performance of LiNi0. 5Mn1. 5O4 cathodes assembled lithium–ion batteries | |
Wang et al. | 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI-BF4) as an ionic liquid-type electrolyte additive to enhance the low-temperature performance of LiNi0. 5Co0. 2Mn0. 3O2/graphite batteries | |
Lin et al. | Insight into the mechanism of improved interfacial properties between electrodes and electrolyte in the graphite/LiNi0. 6Mn0. 2Co0. 2O2 cell via incorporation of 4-propyl-[1, 3, 2] dioxathiolane-2, 2-dioxide (PDTD) | |
Tan et al. | Novel low-temperature electrolyte using isoxazole as the main solvent for lithium-ion batteries | |
Dai et al. | Localized concentrated high-concentration electrolyte enhanced stability and safety for high voltage Li-ion batteries | |
Li et al. | The roles and working mechanism of salt-type additives on the performance of high-voltage lithium-ion batteries | |
Wang et al. | Enhanced high-voltage cyclability of LiNi0. 5Co0. 2Mn0. 3O2-based pouch cells via lithium difluorophosphate introducing as electrolyte additive | |
CN102104172A (en) | Electrolyte solvent for improving safety of battery and lithium secondary battery comprising the same | |
Yan et al. | Lithium difluoro (oxalato) borate as an additive to suppress the aluminum corrosion in lithium bis (fluorosulfony) imide-based nonaqueous carbonate electrolyte | |
Gu et al. | Trimethoxyboroxine as an electrolyte additive to enhance the 4.5 V cycling performance of a Ni-rich layered oxide cathode | |
US20150125759A1 (en) | Solid electrolyte interphase film-suppression additives | |
Qin et al. | Tributyl borate as a novel electrolyte additive to improve high voltage stability of lithium cobalt oxide in carbonate-based electrolyte | |
Wang et al. | Improved high-voltage performance of LiNi1/3Co1/3Mn1/3O2 cathode with Tris (2, 2, 2-trifluoroethyl) phosphite as electrolyte additive | |
Zhang et al. | Enhancing the electrochemical performance of a high-voltage LiCoO2 cathode with a bifunctional electrolyte additive | |
Xu et al. | Facilely solving cathode/electrolyte interfacial issue for high-voltage lithium ion batteries by constructing an effective solid electrolyte interface film | |
Zheng et al. | A multifunctional thiophene-based electrolyte additive for lithium metal batteries using high-voltage LiCoO2 cathode | |
Xiao et al. | Enabling LiNi0. 88Co0. 09Al0. 03O2 cathode materials with stable interface by modifying electrolyte with trimethyl borate | |
Lv et al. | Effect of lithium salt type on silicon anode for lithium-ion batteries |