[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Zhang et al., 2017 - Google Patents

Plasmonic topological insulators for topological nanophotonics

Zhang et al., 2017

View HTML
Document ID
2025201433618192687
Author
Zhang W
Chen X
Ye F
Publication year
Publication venue
Optics letters

External Links

Snippet

Photonic topological insulators are optical structures supporting robust propagation of light at their edges that are topologically protected from scattering. Here we propose the concept of plasmonic topological insulators (PTI) that not only topologically protect light at the lattice …
Continue reading at opg.optica.org (HTML) (other versions)

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/10Light guides of the optical waveguide type
    • G02B6/12Light guides of the optical waveguide type of the integrated circuit kind
    • G02B6/122Light guides of the optical waveguide type of the integrated circuit kind basic optical elements, e.g. light-guiding paths
    • G02B6/1225Light guides of the optical waveguide type of the integrated circuit kind basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/10Light guides of the optical waveguide type
    • G02B6/107Subwavelength-diameter waveguides, e.g. nanowires
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/10Light guides of the optical waveguide type
    • G02B6/12Light guides of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/10Light guides of the optical waveguide type
    • G02B6/12Light guides of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/02Optical fibre with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • GPHYSICS
    • G02OPTICS
    • G02FDEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction
    • GPHYSICS
    • G02OPTICS
    • G02FDEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • GPHYSICS
    • G02OPTICS
    • G02FDEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made
    • G02B1/002Optical elements characterised by the material of which they are made made of materials engineered to provide properties not available in nature, e.g. metamaterials

Similar Documents

Publication Publication Date Title
Ke et al. Topological bound modes in anti-PT-symmetric optical waveguide arrays
Luo et al. Negative refraction without negative index in metallic photonic crystals
Chigrin et al. Self-guiding in two-dimensional photonic crystals
Shi et al. Dispersion-based beam splitter in photonic crystals
Mingaleev et al. Tunable photonic crystal circuits: concepts and designs based on single-pore infiltration
Zhang et al. Plasmonic topological insulators for topological nanophotonics
Zhang et al. Ultra-high-Q TE/TM dual-polarized photonic crystal nanocavities
Haddadi et al. Photonic molecules: tailoring the coupling strength and sign
Luo et al. Superprism effect based on phase velocities
Luo et al. Directive emission based on one-dimensional metal heterostructures
Myroshnychenko et al. Interacting plasmon and phonon polaritons in aligned nano-and microwires
Rahachou et al. Waveguiding properties of surface states in photonic crystals
Li et al. Exceptional points in chiral metasurface based on graphene strip arrays
Jeong et al. Circular hybrid plasmonic waveguide with ultra-long propagation distance
Xiang et al. Omnidirectional gaps of one-dimensional photonic crystals containing indefinite metamaterials
Bashiri et al. Bloch surface waves engineering in one-dimensional photonic crystals with a chiral cap layer
Casse et al. Imaging with subwavelength resolution by a generalized superlens at infrared wavelengths
Lousse et al. Waveguides in inverted opal photonic crystals
Taverne et al. Strong light confinement in rod-connected diamond photonic crystals
Zhu et al. Strong light confinement and gradient force in a hexagonal boron nitride slot waveguide
Martinez et al. Analysis of wave focusing inside a negative-index photonic-crystal slab
Mocella et al. Influence of surface termination on negative reflection by photonic crystals
Botey et al. Unlocked evanescent waves in periodic structures
Ma et al. Realistic photonic bandgap structures for TM-polarized light for all-optical switching
Hyun Nam et al. Deep subwavelength surface modes in metal–dielectric metamaterials