[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Bandyopadhyay et al., 2023 - Google Patents

Efficient quantum algorithms for testing symmetries of open quantum systems

Bandyopadhyay et al., 2023

View PDF
Document ID
1943075836502428978
Author
Bandyopadhyay R
Rubin A
Radulaski M
Wilde M
Publication year
Publication venue
Open Systems & Information Dynamics

External Links

Snippet

Symmetry is an important and unifying notion in many areas of physics. In quantum mechanics, it is possible to eliminate degrees of freedom from a system by leveraging symmetry to identify the possible physical transitions. This allows us to simplify calculations …
Continue reading at arxiv.org (PDF) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • G06F17/5009Computer-aided design using simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/063Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
    • G06N3/0635Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means using analogue means
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • G06N99/002Quantum computers, i.e. information processing by using quantum superposition, coherence, decoherence, entanglement, nonlocality, teleportation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/04Inference methods or devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • G06N99/005Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/02Knowledge representation
    • G06N5/022Knowledge engineering, knowledge acquisition
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/58Random or pseudo-random number generators
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/12Computer systems based on biological models using genetic models
    • G06N3/126Genetic algorithms, i.e. information processing using digital simulations of the genetic system
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/30943Information retrieval; Database structures therefor; File system structures therefor details of database functions independent of the retrieved data type
    • G06F17/30946Information retrieval; Database structures therefor; File system structures therefor details of database functions independent of the retrieved data type indexing structures
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computer systems based on specific mathematical models
    • G06N7/005Probabilistic networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/60Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
    • G06F7/72Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using residue arithmetic
    • G06F7/724Finite field arithmetic
    • G06F7/726Inversion; Reciprocal calculation; Division of elements of a finite field
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/70Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds
    • G06F19/708Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds for data visualisation, e.g. molecular structure representations, graphics generation, display of maps or networks or other visual representations
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme

Similar Documents

Publication Publication Date Title
Gyongyosi et al. A survey on quantum computing technology
Miessen et al. Quantum algorithms for quantum dynamics
Bharadwaj et al. Quantum computation of fluid dynamics
Tsai et al. Bit-slicing the Hilbert space: Scaling up accurate quantum circuit simulation
Bandyopadhyay et al. Efficient quantum algorithms for testing symmetries of open quantum systems
Kanamori et al. A short survey on quantum computers
Di Bartolomeo et al. Noisy gates for simulating quantum computers
Potapov et al. The quantum computer model structure and estimation of the quantum algorithms complexity
Cable et al. Exact and efficient simulation of concordant computation
Zaiou Quantum machine learning approaches for graphs and sequences: application to nuclear safety assessment
Gushanskiy et al. The methodology of implementation and simulation of quantum algorithms and processes
Casarin On higher-derivative gauge theories
Shepherd Quantum Complexity: restrictions on algorithms and architectures
Yu et al. Physics-inspired optimization in the Qubo framework: Key concepts and approaches
Nagai et al. Simulation of Continuous-Variable Quantum Systems with Tensor Network
Ionescu On the arrow of time
Tsai et al. Bit-slicing the hilbert space: Scaling up accurate quantum circuit simulation to a new level
Sander et al. Stripping Quantum Decision Diagrams of their Identity
Joubert et al. An Examination into SQUANCH and its Conversion to Julia
Miller et al. A Reconfigurable Quantum State Tomography Solver in FPGA
Akl Exclusively Quantum: Computations Only Possible on a Quantum Computer
Wootton Circuit Model of Quantum Computation
Sawerwain et al. Natural quantum operational semantics with predicates
Kashyap Quantum Computers, Computing, and Machine Learning: A Review
Zulehner et al. Quantum computing