Wache Ngateu, 2020 - Google Patents
Acoustic detection of the short pulse call of Brydes whales using time domain features and hidden Marcov modelsWache Ngateu, 2020
View PDF- Document ID
- 1935265206676267446
- Author
- Wache Ngateu G
- Publication year
External Links
Snippet
The biological group of cetaceans is frequently studied nowadays as passive acoustic monitoring (PAM) is commonly used to extract the acoustic signals produced by cetaceans, in the midst of noise sounds made by either man during shipping, gas and oil explorations or …
- 241000283153 Cetacea 0 title abstract description 69
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/06—Creation of reference templates; Training of speech recognition systems, e.g. adaptation to the characteristics of the speaker's voice
- G10L15/065—Adaptation
- G10L15/07—Adaptation to the speaker
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00
- G10L25/48—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00 specially adapted for particular use
- G10L25/51—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00 specially adapted for particular use for comparison or discrimination
- G10L25/66—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00 specially adapted for particular use for comparison or discrimination for extracting parameters related to health condition
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/08—Speech classification or search
- G10L15/18—Speech classification or search using natural language modelling
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/08—Speech classification or search
- G10L2015/088—Word spotting
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/08—Speech classification or search
- G10L15/14—Speech classification or search using statistical models, e.g. hidden Markov models [HMMs]
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/06—Creation of reference templates; Training of speech recognition systems, e.g. adaptation to the characteristics of the speaker's voice
- G10L15/063—Training
- G10L2015/0635—Training updating or merging of old and new templates; Mean values; Weighting
- G10L2015/0636—Threshold criteria for the updating
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L17/00—Speaker identification or verification
- G10L17/26—Recognition of special voice characteristics, e.g. for use in lie detectors; Recognition of animal voices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/02—Feature extraction for speech recognition; Selection of recognition unit
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00
- G10L25/03—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00 characterised by the type of extracted parameters
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6279—Classification techniques relating to the number of classes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Usman et al. | Review of automatic detection and classification techniques for cetacean vocalization | |
Noda et al. | Methodology for automatic bioacoustic classification of anurans based on feature fusion | |
Ntalampiras | Generalized sound recognition in reverberant environments | |
Kohlsdorf et al. | Probabilistic extraction and discovery of fundamental units in dolphin whistles | |
Zaheer et al. | A survey on artificial intelligence-based acoustic source identification | |
Wang et al. | Automated call detection for acoustic surveys with structured calls of varying length | |
Prachi et al. | Deep learning based speaker recognition system with cnn and lstm techniques | |
Wang | Supervised speech separation using deep neural networks | |
Cakir | Multilabel sound event classification with neural networks | |
Wache Ngateu | Acoustic detection of the short pulse call of Brydes whales using time domain features and hidden Marcov models | |
Kohlsdorf et al. | Feature Learning and Automatic Segmentation for Dolphin Communication Analysis. | |
Ferroudj | Detection of rain in acoustic recordings of the environment using machine learning techniques | |
Li et al. | Confidence estimation for speech emotion recognition based on the relationship between emotion categories and primitives | |
Heittola | Computational Audio Content Analysis in Everyday Environments | |
Nahar et al. | Effect of data augmentation on dnn-based vad for automatic speech recognition in noisy environment | |
Adavanne | Sound event localization, detection, and tracking by deep neural networks | |
Jahangirnezhad et al. | Deep embedded clustering for bioacoustic clustering of marine mammal vocalization | |
Kareem et al. | Multi-Label Bird Species Classification Using Sequential Aggregation Strategy from Audio Recordings | |
Usman | On Eigendecomposition‑based Algorithms as Feature Extraction Techniques used with Hidden Markov Model for the Detection of Whale Vocalisations | |
Tivarekar et al. | Species recognition using audio processing algorithm | |
Manikandan et al. | Speaker identification using a novel prosody with fuzzy based hierarchical decision tree approach | |
Bhor et al. | Automated bird species identification using audio signal processing and neural network | |
Nath et al. | Separation of Overlapping Audio Signals: A Review on Current Trends and Evolving Approaches | |
Gombos | Acoustic recognition with deep learning; experimenting with data augmentation and neural networks | |
El-metwally et al. | Optimized Deep Neural Networks Audio Tagging Framework for Virtual Business Assistant |