Saleem et al., 2013 - Google Patents
Cross Layer Design Approach in Wireless Mobile ADHOC Network ArchitectureSaleem et al., 2013
View PDF- Document ID
- 1878193752092495864
- Author
- Saleem P
- Kumar D
- Publication year
- Publication venue
- International Journal of Advanced Research in Computer and Communication Engineering
External Links
Snippet
Traditional Wired network uses protocol architectures follow the principle of stack layered implemented by ISO/OSI model. ISO/OSI model was developed to support all the standardization of the network architecture using layered model. Initially wireless network …
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/24—Flow control or congestion control depending on the type of traffic, e.g. priority or quality of service [QoS]
- H04L47/2441—Flow classification
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/19—Flow control or congestion control at layers above network layer
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/22—Traffic shaping
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Application independent communication protocol aspects or techniques in packet data networks
- H04L69/30—Definitions, standards or architectural aspects of layered protocol stacks
- H04L69/32—High level architectural aspects of 7-layer open systems interconnection [OSI] type protocol stacks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/26—Explicit feedback to the source, e.g. choke packet
- H04L47/263—Source rate modification after feedback
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W28/00—Network traffic or resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/06—Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Application independent communication protocol aspects or techniques in packet data networks
- H04L69/18—Multi-protocol handler, e.g. single device capable of handling multiple protocols
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. local area networks [LAN], wide area networks [WAN]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Application independent communication protocol aspects or techniques in packet data networks
- H04L69/22—Header parsing or analysis
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Application independent communication protocol aspects or techniques in packet data networks
- H04L69/16—Transmission control protocol/internet protocol [TCP/IP] or user datagram protocol [UDP]
- H04L69/161—Implementation details of TCP/IP or UDP/IP stack architecture; Specification of modified or new header fields
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/02—Details
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/54—Store-and-forward switching systems
- H04L12/56—Packet switching systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L29/00—Arrangements, apparatus, circuits or systems, not covered by a single one of groups H04L1/00 - H04L27/00 contains provisionally no documents
- H04L29/02—Communication control; Communication processing contains provisionally no documents
- H04L29/06—Communication control; Communication processing contains provisionally no documents characterised by a protocol
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network-specific arrangements or communication protocols supporting networked applications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing packet switching networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance or administration or management of packet switching networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W84/00—Network topologies
- H04W84/18—Self-organizing networks, e.g. ad-hoc networks or sensor networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W80/00—Wireless network protocols or protocol adaptations to wireless operation, e.g. WAP [Wireless Application Protocol]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W40/00—Communication routing or communication path finding
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hu | A system architecture for software-defined industrial Internet of Things | |
CN110662256B (en) | Multi-path cross-protocol transmission data packet scheduling method and system | |
US10231163B2 (en) | Efficient centralized resource and schedule management in time slotted channel hopping networks | |
US8094550B2 (en) | Methods and systems for controlling network communication parameters | |
US20080159150A1 (en) | Method and Apparatus for Preventing IP Datagram Fragmentation and Reassembly | |
US9225598B2 (en) | Method and system for end-to-end management of energy efficient networking protocols | |
CN104982006A (en) | System and method for providing a software defined protocol stack | |
Attada et al. | Cross layer design approach to enhance the quality of service in mobile ad hoc networks | |
Sathya Priya et al. | Enhancing TCP fairness in wireless networks using dual queue approach with optimal queue selection | |
Teymoori et al. | Congestion control in the recursive internetworking architecture (RINA) | |
Saleem et al. | Cross Layer Design Approach in Wireless Mobile ADHOC Network Architecture | |
Peterson et al. | Computer Networks: A Systems Approach, ser | |
Zhuang et al. | Multipath transmission for wireless Internet access–from an end-to-end transport layer perspective | |
Netalkar et al. | mmCPTP: A cross-layer pull based transport protocol for 5g mmwave networks | |
Zhou et al. | Performance enhancement of multipath TCP with cooperative relays in a collaborative community | |
CN113438182A (en) | Flow control system and flow control method based on credit | |
JP5898321B2 (en) | Method and apparatus for router-radio flow control | |
Du et al. | Micro-ANP: A novel network protocol architecture for underwater sensor network | |
Khan | Cross-layer designs: a survey | |
Kliazovich et al. | Introduction: Why cross-layer? Its advantages and disadvantages | |
Jabbar et al. | An Оverview of the Мultipath Тechnologies, their Importance and Types | |
Kumar et al. | An Experimental Study of Concurrent Multipath Transmission Protocol in Lossy and Asymmetric Network Environment | |
Chen et al. | Improved performance with adaptive Dly-ACK for IEEE 802.15. 3 WPAN over UWB PHY | |
Kliazovich et al. | Formal methods in cross layer modeling and optimization of wireless networks: state of the art and future directions | |
Kliazovich et al. | Survey on signaling techniques for cognitive networks |