Lu et al., 2002 - Google Patents
Crosstalk reduction by using chirped fiber grating in a two-wavelength WDM transport systemLu et al., 2002
- Document ID
- 18307114013903312417
- Author
- Lu H
- Tsai W
- Liu C
- Publication year
- Publication venue
- Summaries of Papers Presented at the Lasers and Electro-Optics. CLEO'02. Technical Diges
External Links
Snippet
Summary form only given. AM-VSB CATV transport systems can use a wavelength-division- multiplexing (WDM) technique to increase channel capacity. Crosstalk exists which is mainly caused by stimulated Raman scattering (SRS) and cross-phase modulation (XPM) …
- 239000000835 fiber 0 title abstract description 23
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/29—Repeaters
- H04B10/291—Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
- H04B10/2912—Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form characterised by the medium used for amplification or processing
- H04B10/2916—Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form characterised by the medium used for amplification or processing using Raman or Brillouin amplifiers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/29—Repeaters
- H04B10/291—Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
- H04B10/293—Signal power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2507—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
- H04B10/2537—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to scattering processes, e.g. Raman or Brillouin scattering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2507—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
- H04B10/2543—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to fibre non-linearities, e.g. Kerr effect
- H04B10/2563—Four-wave mixing [FWM]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2507—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
- H04B10/2543—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to fibre non-linearities, e.g. Kerr effect
- H04B10/2557—Cross-phase modulation [XPM]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2507—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
- H04B10/2513—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/501—Structural aspects
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/05—Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06754—Fibre amplifiers
-
- G—PHYSICS
- G02—OPTICS
- G02F—DEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/353—Frequency conversion, i.e. wherein a light beam with frequency components different from those of the incident light beams is generated
- G02F1/3536—Four-wave interaction
- G02F1/3538—Four-wave interaction for optical phase conjugation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/30—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves using scattering effects, e.g. stimulated Brillouin or Raman effects
- H01S3/302—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves using scattering effects, e.g. stimulated Brillouin or Raman effects in an optical fibre
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1079552B1 (en) | Method, optical device, and system for optical fiber transmission | |
EP2672318B1 (en) | Optical amplifier | |
US7027468B2 (en) | Phase-insensitive recovery of clock pulses of wavelength division multiplexed optical signals | |
US7010231B1 (en) | System and method of high-speed transmission and appropriate transmission apparatus | |
EP0767395B1 (en) | Device and method for modifying the spectral characteristics of optical signals | |
US7127182B2 (en) | Efficient optical transmission system | |
US20030219258A1 (en) | Recovery of clock pulses of wavelength division multiplexed optical signals | |
US20040042061A1 (en) | Controlling ASE in optical amplification stages implementing time modulated pump signals | |
Solis-Trapala et al. | Nearly-ideal optical phase conjugation based nonlinear compensation system | |
JP2009177641A (en) | Optical signal processing apparatus, optical receiving apparatus, and optical relay apparatus | |
US7239440B2 (en) | Wavelength conversion apparatus | |
Hui et al. | Frequency response of cross-phase modulation in multispan WDM optical fiber systems | |
EP1606894B1 (en) | Optical transmission system | |
CN1778056B (en) | Counter-pumped distributed raman amplification in wavelength division multiplex optical communication systems | |
Cundiff et al. | Propagation of highly chirped pulses in fiber-optic communications systems | |
US6814376B2 (en) | Method and system for generating short pulse signals | |
Shtaif et al. | Crosstalk in WDM systems caused by cross-phase modulation in erbium-doped fiber amplifiers | |
Lu | Performance comparison between DCF and RDF dispersion compensation in fiber optical CATV systems | |
Lu et al. | Crosstalk reduction by using chirped fiber grating in a two-wavelength WDM transport system | |
US20030043431A1 (en) | Simultaneous demultiplexing and clock recovery of high-speed OTDM signals using a tandem electro-absorption modulator | |
US20050047799A1 (en) | Method and apparatus to reduce second order distortion in optical communications | |
Boubal et al. | 4.16 Tbit/s (104/spl times/40 Gbit/s) unrepeatered transmission over 135 km in S+ C+ L bands with 104 nm total bandwidth | |
US6680787B1 (en) | Optical communication systems | |
US20020044339A1 (en) | Optical transmission system with reduced raman effect depletion | |
Thiele et al. | Impact of discrete Raman amplifier architecture on nonlinear impairments |