[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Wu et al., 2018 - Google Patents

High-speed 3D indoor localization system based on visible light communication using differential evolution algorithm

Wu et al., 2018

Document ID
18282226246996680286
Author
Wu Y
Liu X
Guan W
Chen B
Chen X
Xie C
Publication year
Publication venue
Optics Communications

External Links

Snippet

Indoor positioning system using visible light communication (VLC) is widely believed to be a cost-effective solution with the popularity of LEDs. However, most existing VLC-based systems can only achieve positioning in two-dimensional (2-D) planes, and fail to solve the …
Continue reading at www.sciencedirect.com (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/021Calibration, monitoring or correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0252Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves by comparing measured values with pre-stored measured or simulated values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0284Relative positioning
    • G01S5/0289Relative positioning of multiple transceivers, e.g. in ad hoc networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W4/00Mobile application services or facilities specially adapted for wireless communication networks
    • H04W4/02Mobile application Services making use of the location of users or terminals, e.g. OMA SUPL, OMA MLP or 3GPP LCS
    • H04W4/023Mobile application Services making use of the location of users or terminals, e.g. OMA SUPL, OMA MLP or 3GPP LCS using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0257Hybrid positioning solutions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/02Systems for determining distance or velocity not using reflection or reradiation using radio waves
    • G01S11/06Systems for determining distance or velocity not using reflection or reradiation using radio waves using intensity measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W4/00Mobile application services or facilities specially adapted for wireless communication networks
    • H04W4/02Mobile application Services making use of the location of users or terminals, e.g. OMA SUPL, OMA MLP or 3GPP LCS
    • H04W4/025Mobile application Services making use of the location of users or terminals, e.g. OMA SUPL, OMA MLP or 3GPP LCS using location based information parameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/70Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/785Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system
    • G01S3/786Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically, i.e. tracking systems
    • G01S3/7864T.V. type tracking systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W4/00Mobile application services or facilities specially adapted for wireless communication networks
    • H04W4/02Mobile application Services making use of the location of users or terminals, e.g. OMA SUPL, OMA MLP or 3GPP LCS
    • H04W4/04Mobile application Services making use of the location of users or terminals, e.g. OMA SUPL, OMA MLP or 3GPP LCS using association of physical positions and logical data in a dedicated environment, e.g. buildings or vehicles
    • H04W4/043Mobile application Services making use of the location of users or terminals, e.g. OMA SUPL, OMA MLP or 3GPP LCS using association of physical positions and logical data in a dedicated environment, e.g. buildings or vehicles using ambient awareness, e.g. involving buildings using floor or room numbers

Similar Documents

Publication Publication Date Title
Wu et al. High-speed 3D indoor localization system based on visible light communication using differential evolution algorithm
Cai et al. Indoor high precision three-dimensional positioning system based on visible light communication using particle swarm optimization
Guan et al. A novel three-dimensional indoor positioning algorithm design based on visible light communication
Guan et al. High-precision approach to localization scheme of visible light communication based on artificial neural networks and modified genetic algorithms
Gu et al. Three-dimensional light positioning algorithm with filtering techniques for indoor environments
Tran et al. Machine learning in indoor visible light positioning systems: A review
Yang et al. Indoor location estimation based on LED visible light communication using multiple optical receivers
Peng et al. Three-dimensional high-precision indoor positioning strategy using Tabu search based on visible light communication
Xu et al. Experimental indoor visible light positioning systems with centimeter accuracy based on a commercial smartphone camera
Dawood et al. A comparative analysis of localization algorithms for visible light communication
Chen et al. Indoor high precision three-dimensional positioning system based on visible light communication using improved hybrid bat algorithm
Almadani et al. An experimental evaluation of a 3D visible light positioning system in an industrial environment with receiver tilt and multipath reflections
Guan et al. High precision three-dimensional iterative indoor localization algorithm using code division multiple access modulation based on visible light communication
Hao et al. Vertical measurable displacement approach for altitude accuracy improvement in 3D visible light positioning
Sen et al. 3D indoor positioning with spatial modulation for visible light communications
Chan et al. Utilizing lighting design software for simulation and planning of machine learning based angle-of-arrival (AOA) visible light positioning (VLP) systems
Oh et al. VLC positioning by DNN via WkNN in indoor environment
Wang et al. Research on indoor space positioning using improved particle swarm optimization algorithm based on visible light communication
Chen et al. Performance comparison and analysis on different optimization models for high-precision three-dimensional visible light positioning
Shi et al. A robust method for indoor localization based on visible light communication
Li et al. Dead-zone-free three-dimensional indoor positioning method based on visible light communication with dimensionality reduction algorithm
Vatansever et al. Localization in optical wireless sensor networks for IoT applications
Wu et al. High precision and high speed of three-dimensional indoor localization system based on visible light communication using improved bacterial colony chemotaxis algorithm
Hesham et al. Indoor localization and movement prediction algorithms with light-fidelity
Chaabna et al. Study of RSS-based indoor positioning system for target using visible light communication