Zhu et al., 2012 - Google Patents
Dialkyl‐14H‐benzo [4, 5] isoquino [2, 3‐a] perimidin‐14‐one‐3, 4, 10, 11‐tetracarboxylic diimides: A New Family of n‐Type Organic SemiconductorsZhu et al., 2012
- Document ID
- 18264492423820697789
- Author
- Zhu M
- Zhang J
- Yu G
- Chen H
- Huang J
- Liu Y
- Publication year
- Publication venue
- Chemistry–An Asian Journal
External Links
Snippet
In recent years, significant research efforts have been devoted to developing high- performance organic semiconductors due to their potential applications in flexible and lowcost organic optoelectronic devices, such as organic lightemitting diodes, organic …
- 239000004065 semiconductor 0 title description 8
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/005—Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene
- H01L51/0062—Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene aromatic compounds comprising a hetero atom, e.g.: N,P,S
- H01L51/0071—Polycyclic condensed heteroaromatic hydrocarbons
- H01L51/0072—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ringsystem, e.g. phenanthroline, carbazole
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/005—Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene
- H01L51/0062—Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene aromatic compounds comprising a hetero atom, e.g.: N,P,S
- H01L51/0071—Polycyclic condensed heteroaromatic hydrocarbons
- H01L51/0073—Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ringsystem, e.g. cumarine dyes
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/005—Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene
- H01L51/0052—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H01L51/0053—Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride, perylene tetracarboxylic diimide
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/05—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential- jump barrier or surface barrier multistep processes for their manufacture
- H01L51/0504—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential- jump barrier or surface barrier multistep processes for their manufacture the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or swiched, e.g. three-terminal devices
- H01L51/0508—Field-effect devices, e.g. TFTs
- H01L51/0512—Field-effect devices, e.g. TFTs insulated gate field effect transistors
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/005—Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene
- H01L51/0059—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/0077—Coordination compounds, e.g. porphyrin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/54—Material technologies
- Y02E10/549—Material technologies organic PV cells
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/50—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes [OLED] or polymer light emitting devices [PLED];
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/42—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for sensing infra-red radiation, light, electro-magnetic radiation of shorter wavelength or corpuscular radiation and adapted for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation using organic materials as the active part, or using a combination of organic materials with other material as the active part; Multistep processes for their manufacture
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Nishida et al. | Synthesis, crystal structures, and properties of 6, 12‐diaryl‐substituted indeno [1, 2‐b] fluorenes | |
Lv et al. | High mobility, air stable, organic single crystal transistors of an n‐type diperylene bisimide | |
Wu et al. | 4, 5, 9, 10‐Pyrene diimides: a family of aromatic diimides exhibiting high electron mobility and two‐photon excited emission | |
Zimmermann et al. | High‐efficiency perovskite solar cells using molecularly engineered, thiophene‐rich, hole‐transporting materials: influence of alkyl chain length on power conversion efficiency | |
Fitzner et al. | Dicyanovinyl–Substituted Oligothiophenes: Structure‐Property Relationships and Application in Vacuum‐Processed Small Molecule Organic Solar Cells | |
Miao et al. | 6, 13‐Diethynyl‐5, 7, 12, 14‐tetraazapentacene | |
Miao | N-heteropentacenes and N-heteropentacenequinones: From molecules to semiconductors | |
Xiao et al. | Synthesis, Structure, and Physical Properties of 5, 7, 14, 16‐Tetraphenyl‐8: 9, 12: 13‐bisbenzo‐hexatwistacene | |
Parashchuk et al. | Molecular Self‐Doping Controls Luminescence of Pure Organic Single Crystals | |
Kozma et al. | Synthesis and characterization of new electron acceptor perylene diimide molecules for photovoltaic applications | |
Dai et al. | Thienoacene‐Fused Pentalenes: Syntheses, Structures, Physical Properties and Applications for Organic Field‐Effect Transistors | |
Domínguez et al. | Pyrrolo [3, 2‐b] pyrrole as the Central Core of the Electron Donor for Solution‐Processed Organic Solar Cells | |
Huang et al. | Enhanced Performance of Benzothieno [3, 2‐b] thiophene (BTT)‐Based Bottom‐Contact Thin‐Film Transistors | |
Li et al. | Two Regioisomeric π‐Conjugated Small Molecules: Synthesis, Photophysical, Packing, and Optoelectronic Properties | |
Zhao et al. | High‐Performance UV‐Sensitive Organic Phototransistors Based on Benzo [1, 2‐b: 4, 5‐b′] dithiophene Dimers Linked with Unsaturated Bonds | |
Zhang et al. | A centrosymmetric organic semiconductor with donor–acceptor interaction for highly photostable organic transistors | |
Wang et al. | Tuning electron injection/transporting properties of 9, 10-diphenylanthracene based electron transporters via optimizing the number of peripheral pyridine for highly efficient fluorescent OLEDs | |
Zhu et al. | Dialkyl‐14H‐benzo [4, 5] isoquino [2, 3‐a] perimidin‐14‐one‐3, 4, 10, 11‐tetracarboxylic diimides: A New Family of n‐Type Organic Semiconductors | |
Shao et al. | Solution‐Processable n‐Type Semiconductors Based on Unsymmetrical Naphthalene Imides: Synthesis, Characterization, and Applications in Field‐Effect Transistors | |
Ozcan et al. | A Solution‐Processable meso‐Phenyl‐BODIPY‐Based n‐Channel Semiconductor with Enhanced Fluorescence Emission | |
Jegorovė et al. | Molecular Engineering of Fluorene‐Based Hole‐Transporting Materials for Efficient Perovskite Solar Cells | |
Ren et al. | Design of a Quinoidal Thieno [3, 4‐b] thiophene‐Diketopyrrolopyrrole‐Based Small Molecule as n‐Type Semiconductor | |
Yao et al. | Direct C− H Borylation at the 2‐and 2, 7‐Positions of Pyrene Leading to Brightly Blue‐and Green‐Emitting Chromophores | |
Sun et al. | Indandione‐Terminated Quinoidal Compounds for Low‐Bandgap Small Molecules with Strong Near‐Infrared Absorption: Effect of Conjugation Length on the Properties | |
Chen et al. | n-Type Field-effect Transistors Based on Thieno [3, 2-b] thiophene-2, 5-dione and the Bis (dicyanomethylene) Derivatives |