[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Zhu et al., 2012 - Google Patents

Dialkyl‐14H‐benzo [4, 5] isoquino [2, 3‐a] perimidin‐14‐one‐3, 4, 10, 11‐tetracarboxylic diimides: A New Family of n‐Type Organic Semiconductors

Zhu et al., 2012

Document ID
18264492423820697789
Author
Zhu M
Zhang J
Yu G
Chen H
Huang J
Liu Y
Publication year
Publication venue
Chemistry–An Asian Journal

External Links

Snippet

In recent years, significant research efforts have been devoted to developing high- performance organic semiconductors due to their potential applications in flexible and lowcost organic optoelectronic devices, such as organic lightemitting diodes, organic …
Continue reading at aces.onlinelibrary.wiley.com (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/005Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene
    • H01L51/0062Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene aromatic compounds comprising a hetero atom, e.g.: N,P,S
    • H01L51/0071Polycyclic condensed heteroaromatic hydrocarbons
    • H01L51/0072Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ringsystem, e.g. phenanthroline, carbazole
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/005Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene
    • H01L51/0062Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene aromatic compounds comprising a hetero atom, e.g.: N,P,S
    • H01L51/0071Polycyclic condensed heteroaromatic hydrocarbons
    • H01L51/0073Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ringsystem, e.g. cumarine dyes
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/005Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene
    • H01L51/0052Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H01L51/0053Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride, perylene tetracarboxylic diimide
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/05Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential- jump barrier or surface barrier multistep processes for their manufacture
    • H01L51/0504Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential- jump barrier or surface barrier multistep processes for their manufacture the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or swiched, e.g. three-terminal devices
    • H01L51/0508Field-effect devices, e.g. TFTs
    • H01L51/0512Field-effect devices, e.g. TFTs insulated gate field effect transistors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/005Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene
    • H01L51/0059Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/0077Coordination compounds, e.g. porphyrin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/54Material technologies
    • Y02E10/549Material technologies organic PV cells
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/50Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes [OLED] or polymer light emitting devices [PLED];
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/42Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for sensing infra-red radiation, light, electro-magnetic radiation of shorter wavelength or corpuscular radiation and adapted for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation using organic materials as the active part, or using a combination of organic materials with other material as the active part; Multistep processes for their manufacture

Similar Documents

Publication Publication Date Title
Nishida et al. Synthesis, crystal structures, and properties of 6, 12‐diaryl‐substituted indeno [1, 2‐b] fluorenes
Lv et al. High mobility, air stable, organic single crystal transistors of an n‐type diperylene bisimide
Wu et al. 4, 5, 9, 10‐Pyrene diimides: a family of aromatic diimides exhibiting high electron mobility and two‐photon excited emission
Zimmermann et al. High‐efficiency perovskite solar cells using molecularly engineered, thiophene‐rich, hole‐transporting materials: influence of alkyl chain length on power conversion efficiency
Fitzner et al. Dicyanovinyl–Substituted Oligothiophenes: Structure‐Property Relationships and Application in Vacuum‐Processed Small Molecule Organic Solar Cells
Miao et al. 6, 13‐Diethynyl‐5, 7, 12, 14‐tetraazapentacene
Miao N-heteropentacenes and N-heteropentacenequinones: From molecules to semiconductors
Xiao et al. Synthesis, Structure, and Physical Properties of 5, 7, 14, 16‐Tetraphenyl‐8: 9, 12: 13‐bisbenzo‐hexatwistacene
Parashchuk et al. Molecular Self‐Doping Controls Luminescence of Pure Organic Single Crystals
Kozma et al. Synthesis and characterization of new electron acceptor perylene diimide molecules for photovoltaic applications
Dai et al. Thienoacene‐Fused Pentalenes: Syntheses, Structures, Physical Properties and Applications for Organic Field‐Effect Transistors
Domínguez et al. Pyrrolo [3, 2‐b] pyrrole as the Central Core of the Electron Donor for Solution‐Processed Organic Solar Cells
Huang et al. Enhanced Performance of Benzothieno [3, 2‐b] thiophene (BTT)‐Based Bottom‐Contact Thin‐Film Transistors
Li et al. Two Regioisomeric π‐Conjugated Small Molecules: Synthesis, Photophysical, Packing, and Optoelectronic Properties
Zhao et al. High‐Performance UV‐Sensitive Organic Phototransistors Based on Benzo [1, 2‐b: 4, 5‐b′] dithiophene Dimers Linked with Unsaturated Bonds
Zhang et al. A centrosymmetric organic semiconductor with donor–acceptor interaction for highly photostable organic transistors
Wang et al. Tuning electron injection/transporting properties of 9, 10-diphenylanthracene based electron transporters via optimizing the number of peripheral pyridine for highly efficient fluorescent OLEDs
Zhu et al. Dialkyl‐14H‐benzo [4, 5] isoquino [2, 3‐a] perimidin‐14‐one‐3, 4, 10, 11‐tetracarboxylic diimides: A New Family of n‐Type Organic Semiconductors
Shao et al. Solution‐Processable n‐Type Semiconductors Based on Unsymmetrical Naphthalene Imides: Synthesis, Characterization, and Applications in Field‐Effect Transistors
Ozcan et al. A Solution‐Processable meso‐Phenyl‐BODIPY‐Based n‐Channel Semiconductor with Enhanced Fluorescence Emission
Jegorovė et al. Molecular Engineering of Fluorene‐Based Hole‐Transporting Materials for Efficient Perovskite Solar Cells
Ren et al. Design of a Quinoidal Thieno [3, 4‐b] thiophene‐Diketopyrrolopyrrole‐Based Small Molecule as n‐Type Semiconductor
Yao et al. Direct C− H Borylation at the 2‐and 2, 7‐Positions of Pyrene Leading to Brightly Blue‐and Green‐Emitting Chromophores
Sun et al. Indandione‐Terminated Quinoidal Compounds for Low‐Bandgap Small Molecules with Strong Near‐Infrared Absorption: Effect of Conjugation Length on the Properties
Chen et al. n-Type Field-effect Transistors Based on Thieno [3, 2-b] thiophene-2, 5-dione and the Bis (dicyanomethylene) Derivatives