Wang et al., 2010 - Google Patents
Design and analysis of a dispersion flattened and highly nonlinear photonic crystal fiber with ultralow confinement lossWang et al., 2010
View HTML- Document ID
- 18137734610310078255
- Author
- Wang Y
- Zhang X
- Ren X
- Zheng L
- Liu X
- Huang Y
- Publication year
- Publication venue
- Applied optics
External Links
Snippet
We present a novel and robust design for a photonic crystal fiber with flattened dispersion, a highly nonlinear coefficient, and low confinement loss for its dual concentric core structure. The proposed fiber has a modest number of design parameters. Analysis results show that …
- 239000006185 dispersion 0 title abstract description 61
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/02—Optical fibre with cladding with or without a coating
- G02B6/02295—Microstructured optical fibre
- G02B6/02314—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
- G02B6/02319—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by core or core-cladding interface features
- G02B6/02338—Structured core, e.g. core contains more than one material, non-constant refractive index distribution in core, asymmetric or non-circular elements in core unit, multiple cores, insertions between core and clad
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/02—Optical fibre with cladding with or without a coating
- G02B6/02295—Microstructured optical fibre
- G02B6/02314—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
- G02B6/02342—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
- G02B6/02376—Longitudinal variation along fibre axis direction, e.g. tapered holes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/02—Optical fibre with cladding with or without a coating
- G02B6/036—Optical fibre with cladding with or without a coating core or cladding comprising multiple layers
- G02B6/03616—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
- G02B6/03638—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
-
- G—PHYSICS
- G02—OPTICS
- G02F—DEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of optical devices, e.g. polarisers, reflectors or illuminating devices, with the cell
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/10—Light guides of the optical waveguide type
- G02B6/12—Light guides of the optical waveguide type of the integrated circuit kind
- G02B6/122—Light guides of the optical waveguide type of the integrated circuit kind basic optical elements, e.g. light-guiding paths
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/10—Light guides of the optical waveguide type
- G02B6/12—Light guides of the optical waveguide type of the integrated circuit kind
- G02B6/13—Integrated optical circuits characterised by the manufacturing method
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/02—Optical fibre with cladding with or without a coating
- G02B6/02004—Optical fibre with cladding with or without a coating characterised by the core effective area or mode field radius
- G02B6/02009—Large effective area or mode field radius, e.g. to reduce nonlinear effects in single mode fibres
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/10—Light guides of the optical waveguide type
- G02B6/107—Subwavelength-diameter waveguides, e.g. nanowires
-
- G—PHYSICS
- G02—OPTICS
- G02F—DEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F2001/3528—Non-linear optics for producing a supercontinuum
-
- G—PHYSICS
- G02—OPTICS
- G02F—DEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2202/00—Materials and properties
- G02F2202/32—Photonic crystals
-
- G—PHYSICS
- G02—OPTICS
- G02F—DEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2201/00—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Transition of Fabry–Perot and antiresonant mechanisms via a SMF-capillary-SMF structure | |
Kim et al. | Elliptical defected core photonic crystal fiber with high birefringence and negative flattened dispersion | |
Yang et al. | High birefringence photonic crystal fiber with high nonlinearity and low confinement loss | |
Saitoh et al. | Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses | |
Suzuki et al. | Optical properties of a low-loss polarization-maintaining photonic crystal fiber | |
Saitoh et al. | Empirical relations for simple design of photonic crystal fibers | |
Bouk et al. | Dispersion properties of square-lattice photonic crystal fibers | |
Koshiba et al. | Finite-element analysis of birefringence and dispersion properties in actual and idealized holey-fiber structures | |
Wang et al. | Design and analysis of a dispersion flattened and highly nonlinear photonic crystal fiber with ultralow confinement loss | |
Kim et al. | Novel optical properties of six-fold symmetric photonic quasicrystal fibers | |
Poletti et al. | The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers | |
Li et al. | Design of a pentagonal photonic crystal fiber with high birefringence and large flattened negative dispersion | |
Habib et al. | Residual dispersion compensation over the S+ C+ L+ U wavelength bands using highly birefringent octagonal photonic crystal fiber | |
Zhang et al. | Fabrication and supercontinuum generation in dispersion flattened bismuth microstructured optical fiber | |
Florous et al. | The role of artificial defects for engineering large effective mode area, flat chromatic dispersion, and low leakage losses in photonic crystal fibers: Towards high speed reconfigurable transmission platforms | |
Wang et al. | Bend-resistant large-mode-area photonic crystal fiber with a triangular-core | |
Kumar et al. | Large-mode-area single-polarization single-mode photonic crystal fiber: design and analysis | |
Wang et al. | Splicing Ge-doped photonic crystal fibers using commercial fusion splicer with default discharge parameters | |
Li et al. | Design of highly nonlinear photonic crystal fibers with flattened chromatic dispersion | |
Saitoh et al. | Theoretical realization of holey fiber with flat chromatic dispersion and large mode area: an intriguing defected approach | |
Lu et al. | Analysis of birefringent and dispersive properties of photonic crystal fibers | |
Saini et al. | Asymmetric large-mode-area photonic crystal fiber structure with effective single-mode operation: design and analysis | |
Eguchi et al. | Single-mode single-polarization holey fiber using anisotropic fundamental space-filling mode | |
Hu et al. | Holey fiber design for single-polarization single-mode guidance | |
Xu et al. | Highly nonlinear all-solid photonic crystal fibers with low dispersion slope |