[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Liu et al., 2023 - Google Patents

An adaptive traffic flow prediction model based on spatiotemporal graph neural network

Liu et al., 2023

Document ID
18165463225714980534
Author
Liu T
Zhang J
Publication year
Publication venue
The Journal of Supercomputing

External Links

Snippet

The traffic flow prediction task is essential to the urban intelligent transportation system. Due to the complex correlation of traffic flow data, insufficient use of spatiotemporal features will often lead to significant deviations in prediction results. This paper proposes an adaptive …
Continue reading at link.springer.com (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • G06F17/5009Computer-aided design using simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • G06N3/04Architectures, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/30861Retrieval from the Internet, e.g. browsers
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • G06N99/005Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management, e.g. organising, planning, scheduling or allocating time, human or machine resources; Enterprise planning; Organisational models
    • G06Q10/063Operations research or analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce, e.g. shopping or e-commerce
    • G06Q30/02Marketing, e.g. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards; Price estimation or determination
    • G06Q30/0202Market predictions or demand forecasting
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for a specific business sector, e.g. utilities or tourism
    • G06Q50/01Social networking
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation, e.g. linear programming, "travelling salesman problem" or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for a specific business sector, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/20Education
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computer systems based on specific mathematical models
    • G06N7/005Probabilistic networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F2217/00Indexing scheme relating to computer aided design [CAD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints

Similar Documents

Publication Publication Date Title
Bui et al. Spatial-temporal graph neural network for traffic forecasting: An overview and open research issues
Tian et al. Spatial‐temporal attention wavenet: A deep learning framework for traffic prediction considering spatial‐temporal dependencies
Yin et al. Multi-stage attention spatial-temporal graph networks for traffic prediction
Ye et al. Meta graph transformer: A novel framework for spatial–temporal traffic prediction
Yu et al. Prediction of highway tunnel pavement performance based on digital twin and multiple time series stacking
Luo et al. Directed hypergraph attention network for traffic forecasting
Modi et al. Multistep traffic speed prediction: A deep learning based approach using latent space mapping considering spatio-temporal dependencies
Liu et al. An adaptive traffic flow prediction model based on spatiotemporal graph neural network
Wang et al. Spatial–temporal multi-feature fusion network for long short-term traffic prediction
Liu et al. STGHTN: Spatial-temporal gated hybrid transformer network for traffic flow forecasting
Chen et al. Graph attention network with spatial-temporal clustering for traffic flow forecasting in intelligent transportation system
Chen et al. Traffic forecasting with graph spatial–temporal position recurrent network
Hu et al. Spatio-temporal graph convolutional networks via view fusion for trajectory data analytics
Jin et al. HetGAT: a heterogeneous graph attention network for freeway traffic speed prediction
Fan et al. RGDAN: A random graph diffusion attention network for traffic prediction
Wang et al. TransGAT: A dynamic graph attention residual networks for traffic flow forecasting
Huang et al. A time-dependent attention convolutional LSTM method for traffic flow prediction
Su et al. Spatial-temporal graph convolutional networks for traffic flow prediction considering multiple traffic parameters
Chai et al. A Multifeature Fusion Short‐Term Traffic Flow Prediction Model Based on Deep Learnings
Chang et al. Enhanced road information representation in graph recurrent network for traffic speed prediction
Guo et al. Learning and integration of adaptive hybrid graph structures for multivariate time series forecasting
Wu et al. Graph convolutional dynamic recurrent network with attention for traffic forecasting
Liu et al. ST-DAGCN: A spatiotemporal dual adaptive graph convolutional network model for traffic prediction
Bhaumik et al. STLGRU: Spatio-temporal lightweight graph GRU for traffic flow prediction
Zhang et al. Adaptive and Interactive Multi-Level Spatio-Temporal Network for Traffic Forecasting