Nithin, 2022 - Google Patents
REAL-TIME STRUCTURAL HEALTH MONITORING: AN INNOVATIVE APPROACH TO ENSURING THE DURABILITY AND SAFETY OF STRUCTURES.Nithin, 2022
- Document ID
- 18090040762643267848
- Author
- Nithin T
- Publication year
- Publication venue
- I-Manager's Journal on Structural Engineering
External Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
- G01M5/00—Investigating the elasticity of structures, e.g. deflection of bridges, air-craft wings
- G01M5/0041—Investigating the elasticity of structures, e.g. deflection of bridges, air-craft wings by determining deflection or stress
- G01M5/005—Investigating the elasticity of structures, e.g. deflection of bridges, air-craft wings by determining deflection or stress by means of external apparatus, e.g. test benches or portable test systems
- G01M5/0058—Investigating the elasticity of structures, e.g. deflection of bridges, air-craft wings by determining deflection or stress by means of external apparatus, e.g. test benches or portable test systems of elongated objects, e.g. pipes, masts, towers or railways
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0058—Kind of property studied
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
- G01M5/00—Investigating the elasticity of structures, e.g. deflection of bridges, air-craft wings
- G01M5/0033—Investigating the elasticity of structures, e.g. deflection of bridges, air-craft wings by determining damage, crack or wear
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical means
- G01B11/16—Measuring arrangements characterised by the use of optical means for measuring the deformation in a solid, e.g. optical strain gauge
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/06—Visualisation of the interior, e.g. acoustic microscopy
- G01N29/0654—Imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/40—Investigating hardness or rebound hardness
- G01N3/42—Investigating hardness or rebound hardness by performing impressions under a steady load by indentors, e.g. sphere, pyramid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/84—Systems specially adapted for particular applications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
- G01M5/00—Investigating the elasticity of structures, e.g. deflection of bridges, air-craft wings
- G01M5/0066—Investigating the elasticity of structures, e.g. deflection of bridges, air-craft wings by exciting or detecting vibration or acceleration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
- G01M7/00—Vibration-testing of structures; Shock-testing of structures
- G01M7/02—Vibration-testing by means of a shake table
- G01M7/025—Measuring arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/08—Testing of mechanical properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pallarés et al. | Structural health monitoring (SHM) and Nondestructive testing (NDT) of slender masonry structures: A practical review | |
Cawley | Structural health monitoring: Closing the gap between research and industrial deployment | |
Bayar et al. | A novel study for the estimation of crack propagation in concrete using machine learning algorithms | |
Omar et al. | Condition assessment of reinforced concrete bridges: Current practice and research challenges | |
Soleymani et al. | Damage detection and monitoring in heritage masonry structures: Systematic review | |
Chang et al. | Health monitoring of civil infrastructure | |
Sabato et al. | Noncontact sensing techniques for AI-aided structural health monitoring: a systematic review | |
Ghosh et al. | Real-time structural health monitoring for concrete beams: A cost-effective ‘Industry 4.0’solution using piezo sensors | |
Gomes et al. | Inverse structural damage identification problem in CFRP laminated plates using SFO algorithm based on strain fields | |
Yang et al. | An automatic finite element modelling for deformation analysis of composite structures | |
Katam et al. | A review on structural health monitoring: past to present | |
Winkler et al. | Innovative long-term monitoring of the great belt bridge expansion joint using digital image correlation | |
Seemab et al. | Automated detection of propagating cracks in RC beams without shear reinforcement based on DIC-controlled modeling of damage localization | |
Barrile et al. | Road infrastructure monitoring: an experimental geomatic integrated system | |
Oats et al. | Digital image correlation advances in structural evaluation applications: a review | |
di Marzo et al. | A Methodology for Structural Damage Detection Adding Masses | |
KR20220023267A (en) | Bridge inspection method and system | |
Desai | Small-strain measurement in bridge connections using the digital image correlation (DIC) technique | |
Hassani et al. | Smart bridge monitoring | |
CN114662619A (en) | Bridge monitoring system based on multi-source data fusion | |
Strauss et al. | Shear performance mechanism description using digital image correlation | |
Sharma et al. | Structural health monitoring using image processing techniques-a review | |
Nithin | REAL-TIME STRUCTURAL HEALTH MONITORING: AN INNOVATIVE APPROACH TO ENSURING THE DURABILITY AND SAFETY OF STRUCTURES. | |
Cui et al. | Monitoring and detection of steel bridge diseases: A review | |
Oboe et al. | Crack Size Estimation with an Inverse Finite Element Model |