Hassanein et al., 2003 - Google Patents
Load-aware destination-controlled routing for MANETsHassanein et al., 2003
- Document ID
- 18081355532465318573
- Author
- Hassanein H
- Zhou A
- Publication year
- Publication venue
- Computer Communications
External Links
Snippet
An ad hoc wireless mobile network is an infrastructure-less mobile network that has no fixed routers; instead, all nodes are capable of movement and can be connected dynamically in an arbitrary manner. In order to facilitate communication of mobile nodes that may not be …
- 230000000694 effects 0 abstract description 22
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/02—Communication route or path selection, e.g. power-based or shortest path routing
- H04W40/04—Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/02—Communication route or path selection, e.g. power-based or shortest path routing
- H04W40/12—Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
- H04W40/14—Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality based on stability
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/24—Connectivity information management, e.g. connectivity discovery or connectivity update
- H04W40/246—Connectivity information discovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/02—Communication route or path selection, e.g. power-based or shortest path routing
- H04W40/20—Communication route or path selection, e.g. power-based or shortest path routing based on geographic position or location
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W84/00—Network topologies
- H04W84/18—Self-organizing networks, e.g. ad-hoc networks or sensor networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/02—Communication route or path selection, e.g. power-based or shortest path routing
- H04W40/22—Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
- H04W88/04—Terminal devices adapted for relaying to or from another terminal or user
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/34—Modification of an existing route
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W28/00—Network traffic or resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/10—Flow control between communication endpoints
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/02—Topology update or discovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/12—Shortest path evaluation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchical pre-organized networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/20—Hop count for routing purposes, e.g. TTL
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/22—Alternate routing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/48—Routing tree calculation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/02—Details
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W36/00—Hand-off or reselection arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W8/00—Network data management
- H04W8/02—Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
- H04W8/08—Mobility data transfer
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W80/00—Wireless network protocols or protocol adaptations to wireless operation, e.g. WAP [Wireless Application Protocol]
- H04W80/04—Network layer protocols, e.g. mobile IP [Internet Protocol]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network-specific arrangements or communication protocols supporting networked applications
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hassanein et al. | Routing with load balancing in wireless ad hoc networks | |
Zhou et al. | Load-balanced wireless ad hoc routing | |
Nandiraju et al. | Multipath routing in wireless mesh networks | |
KR101033720B1 (en) | Method and system for improving a wireless communication route | |
Saigal et al. | Load balanced routing in mobile ad hoc networks | |
Rahman et al. | A simulation based performance comparison of routing protocol on Mobile Ad-hoc Network (proactive, reactive and hybrid) | |
EP1698116B1 (en) | Method and system for routing traffic in ad hoc networks | |
Hassanein et al. | Load-aware destination-controlled routing for MANETs | |
Ali et al. | Node centric load balancing routing protocol for mobile ad hoc networks | |
Anwar et al. | Performance Analysis of Ad hoc Routing Protocols in Mobile WiMAX Environment. | |
Kim et al. | An ad-hoc routing protocol with minimum contention time and load balancing | |
Anita et al. | Neighbor Coverage and Bandwidth Aware Multiple Disjoint Path Discovery in Wireless Mesh Networks | |
Safwat et al. | Infrastructure-based routing in wireless mobile ad hoc networks | |
Al-Karaki et al. | End-to-end support for statistical quality of service in heterogeneous mobile ad hoc networks | |
Wang et al. | A-DSR: A DSR-based anycast protocol for IPv6 flow in mobile ad hoc networks | |
Boukerche et al. | A performance evaluation of a pre‐emptive on‐demand distance vector routing protocol for mobile ad hoc networks | |
Al‐Qassas et al. | Performance comparison of end‐to‐end and on‐the‐spot traffic‐aware techniques | |
Braun et al. | Multihop wireless networks | |
Dong et al. | Supernode-based reverse labeling algorithm: QoS support on mobile ad hoc networks | |
Hassan et al. | Design of an energy‐efficient and reliable data delivery mechanism for mobile ad hoc networks: a cross‐layer approach | |
Ahmad et al. | Efficient AODV routing based on traffic load and mobility of node in MANET | |
Nandiraju et al. | Adaptive state-based multi-radio multi-channel multi-path routing in wireless mesh networks | |
Junnarkar et al. | Novel quality of service (qos) improvement routing protocol for manet using ant colony optimization | |
Shah et al. | Adaptive anycast: A new anycast protocol for performance improvement in delay tolerant networks | |
Le et al. | LARM: A load-aware routing metric for multi-radio wireless mesh networks |