Rutkowska et al., 2018 - Google Patents
Application of molecularly imprinted polymers in analytical chiral separations and analysisRutkowska et al., 2018
View PDF- Document ID
- 18053130194226245653
- Author
- Rutkowska M
- Płotka-Wasylka J
- Morrison C
- Wieczorek P
- Namieśnik J
- Marć M
- Publication year
- Publication venue
- TrAC Trends in Analytical Chemistry
External Links
Snippet
Over the last two decades the process of development and application of a new types of molecular imprinted polymer (MIP) sorbents in the field of analytical chemistry have been widely described in the literature. One of the new trends in analytical chemistry practice is …
- 229920000344 Molecularly imprinted polymer 0 title abstract description 173
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS, COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/265—Synthetic macromolecular compounds modified or post-treated polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D15/00—Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
- B01D15/08—Selective adsorption, e.g. chromatography
- B01D15/26—Selective adsorption, e.g. chromatography characterised by the separation mechanism
- B01D15/38—Selective adsorption, e.g. chromatography characterised by the separation mechanism involving specific interaction not covered by one or more of groups B01D15/265 - B01D15/36
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS, COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/281—Sorbents specially adapted for preparative, analytical or investigative chromatography
- B01J20/282—Porous sorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D15/00—Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
- B01D15/08—Selective adsorption, e.g. chromatography
- B01D15/26—Selective adsorption, e.g. chromatography characterised by the separation mechanism
- B01D15/32—Bonded phase chromatography
- B01D15/325—Reversed phase
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS, COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3231—Impregnating or coating; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
- B01J20/3242—Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS, COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/281—Sorbents specially adapted for preparative, analytical or investigative chromatography
- B01J20/286—Phases chemically bonded to a substrate, e.g. to silica or to polymers
- B01J20/287—Non-polar phases; Reversed phases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS, COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS, COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/50—Aspects relating to the use of sorbent or filter aid materials
- B01J2220/54—Sorbents specially adapted for analytical or investigative chromatography
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rutkowska et al. | Application of molecularly imprinted polymers in analytical chiral separations and analysis | |
Song et al. | Molecularly imprinted polymers based materials and their applications in chromatographic and electrophoretic separations | |
Hu et al. | Novel applications of molecularly-imprinted polymers in sample preparation | |
Haginaka | Monodispersed, molecularly imprinted polymers as affinity-based chromatography media | |
Zou et al. | Monolithic stationary phases for liquid chromatography and capillary electrochromatography | |
Maier et al. | Chiral recognition applications of molecularly imprinted polymers: a critical review | |
Chen et al. | Recent advances in molecular imprinting technology: current status, challenges and highlighted applications | |
Gama et al. | Monoliths: Synthetic routes, functionalization and innovative analytical applications | |
Hong et al. | Recent advances in the preparation and application of monolithic capillary columns in separation science | |
Cheong et al. | Recent applications of molecular imprinted polymers for enantio-selective recognition | |
Cheong et al. | Molecular imprinted polymers for separation science: A review of reviews | |
Turiel et al. | Molecularly imprinted polymers: towards highly selective stationary phases in liquid chromatography and capillary electrophoresis | |
Svec et al. | Molded rigid monolithic porous polymers: an inexpensive, efficient, and versatile alternative to beads for the design of materials for numerous applications | |
Ansell | Molecularly imprinted polymers for the enantioseparation of chiral drugs | |
Lämmerhofer et al. | Separation of enantiomers by capillary electrochromatography | |
Arrua et al. | Recent developments and future possibilities for polymer monoliths in separation science | |
Zheng et al. | Synthesis and theoretical study of molecularly imprinted monoliths for HPLC | |
Wei et al. | Imprinted monoliths: recent significant progress in analysis field | |
Guo et al. | Recent developments in cyclodextrin functionalized monolithic columns for the enantioseparation of chiral drugs | |
Quaglia et al. | Approaches to imprinted stationary phases for affinity capillary electrochromatography | |
Lämmerhofer et al. | Monoliths with chiral surface functionalization for enantioselective capillary electrochromatography | |
WO2004007597A1 (en) | Porous molecularly imprinted polymer membranes | |
Wolter et al. | In-situ functionalized monolithic polysiloxane-polymethacrylate composite materials from polythiol-ene double click reaction in capillary column format for enantioselective nano-high-performance liquid chromatography | |
Echevarria et al. | Organic monolithic capillary columns coated with cellulose tris (3, 5-dimethylphenyl carbamate) for enantioseparations by capillary HPLC | |
Biffis et al. | Physical forms of MIPs |