Huffman et al., 2015 - Google Patents
Detection of soil-abutment interaction by monitoring bridge response using vehicle excitationHuffman et al., 2015
View PDF- Document ID
- 17929366540960391368
- Author
- Huffman J
- Xiao F
- Chen G
- Hulsey J
- Publication year
- Publication venue
- Journal of Civil Structural Health Monitoring
External Links
Snippet
This paper aims to explore fundamental characteristics of bridge vibration spectra to potentially evaluate soil-abutment interactions and changes in abutment earth pressures. To this aim, the bridge response to the excitation of an approaching vehicle on road is utilized …
- 230000005284 excitation 0 title abstract description 26
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/26—Investigating or analysing materials by specific methods not covered by the preceding groups oils; viscous liquids; paints; inks
- G01N33/28—Oils, i.e. hydrocarbon liquids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
- G01M5/00—Investigating the elasticity of structures, e.g. deflection of bridges, air-craft wings
- G01M5/0041—Investigating the elasticity of structures, e.g. deflection of bridges, air-craft wings by determining deflection or stress
- G01M5/005—Investigating the elasticity of structures, e.g. deflection of bridges, air-craft wings by determining deflection or stress by means of external apparatus, e.g. test benches or portable test systems
- G01M5/0058—Investigating the elasticity of structures, e.g. deflection of bridges, air-craft wings by determining deflection or stress by means of external apparatus, e.g. test benches or portable test systems of elongated objects, e.g. pipes, masts, towers or railways
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0058—Kind of property studied
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/42—Investigating or analysing materials by specific methods not covered by the preceding groups road-making materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/06—Indicating or recording means; Sensing means
- G01N2203/0617—Electrical or magnetic indicating, recording or sensing means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress in general
- G01L1/25—Measuring force or stress in general using wave or particle radiation, e.g. X-rays, microwaves, neutrons
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress in general
- G01L1/24—Measuring force or stress in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infra-red, visible light, ultra-violet
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/44—Processing the detected response signal, e.g. electronic circuits specially adapted therefor
- G01N29/46—Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/21—Polarisation-affecting properties
- G01N21/23—Bi-refringence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
- G01M13/00—Testing of machine parts
- G01M13/02—Testing of gearing or of transmission mechanisms
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
- G01M7/00—Vibration-testing of structures; Shock-testing of structures
- G01M7/08—Shock-testing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
- G01M7/00—Vibration-testing of structures; Shock-testing of structures
- G01M7/02—Vibration-testing by means of a shake table
- G01M7/025—Measuring arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/636—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited using an arrangement of pump beam and probe beam; using the measurement of optical non-linear properties
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yang et al. | Bridge damping identification by vehicle scanning method | |
Huffman et al. | Detection of soil-abutment interaction by monitoring bridge response using vehicle excitation | |
Zhang et al. | Structural identification and damage detection through long-gauge strain measurements | |
Wu et al. | Parametric study of a rapid bridge assessment method using distributed macro-strain influence envelope line | |
Lorenzoni et al. | Ambient and free-vibration tests to improve the quantification and estimation of modal parameters in existing bridges | |
Hester et al. | Identifying damage in a bridge by analysing rotation response to a moving load | |
Tan et al. | Extracting mode shapes from drive-by measurements to detect global and local damage in bridges | |
Tian et al. | Flexibility identification and deflection prediction of a three-span concrete box girder bridge using impacting test data | |
Laura et al. | Static and dynamic testing of highway bridges: A best practice example | |
Helmi et al. | Accurate measurements of gross vehicle weight through bridge weigh-in-motion: a case study | |
Zhang et al. | Strain flexibility identification of bridges from long-gauge strain measurements | |
Sawicki et al. | Long-term strain measurements of traffic and temperature effects on an RC bridge deck slab strengthened with an R-UHPFRC layer | |
OBrien et al. | Wavelet-based operating deflection shapes for locating scour-related stiffness losses in multi-span bridges | |
Zhang et al. | Structural health monitoring of a steel stringer bridge with area sensing | |
McGeown et al. | Using measured rotation on a beam to detect changes in its structural condition | |
Stromquist-LeVoir et al. | Determining Time Variation of Cable Tension Forces in Suspended Bridges Using Time‐Frequency Analysis | |
Tomaszewska et al. | Study on applicability of two modal identification techniques in irrelevant cases | |
Hansen | Determination and assessment of fatigue stresses on concrete bridges | |
Gaute-Alonso et al. | Temporary cable force monitoring techniques during bridge construction-phase: The Tajo River Viaduct experience | |
Hou et al. | Rapid-to-deploy wireless monitoring systems for static and dynamic load testing of bridges: validation on the grove street bridge | |
Azim | A data-driven damage assessment tool for truss-type railroad bridges using train induced strain time-history response | |
Kumar et al. | Detection and localization of small damages in a real bridge by local excitation using piezoelectric actuators | |
Zolghadri et al. | Identification of truck types using strain sensors include co-located strain gauges | |
Whelan et al. | Effect of measurement uncertainties on strain-based damage diagnostics for highway bridges | |
Xiao et al. | Monitoring and Analysis of the Dynamical Properties of Bridge–Abutment Interactions |