A Theofilatos et al., 2011 - Google Patents
Computational approaches for the prediction of protein-protein interactions: a surveyA Theofilatos et al., 2011
- Document ID
- 1782999192450855994
- Author
- A Theofilatos K
- M Dimitrakopoulos C
- K Tsakalidis A
- D Likothanassis S
- T Papadimitriou S
- P Mavroudi S
- Publication year
- Publication venue
- Current Bioinformatics
External Links
Snippet
Protein-Protein Interactions (PPIs) play a very important role in many cellular processes and a variety of experimental approaches have been developed for their identification. These approaches however are partial, timeconsuming and they usually suffer from high error …
- 230000004850 protein–protein interaction 0 title abstract description 115
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/16—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for molecular structure, e.g. structure alignment, structural or functional relations, protein folding, domain topologies, drug targeting using structure data, involving two-dimensional or three-dimensional structures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/18—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for functional genomics or proteomics, e.g. genotype-phenotype associations, linkage disequilibrium, population genetics, binding site identification, mutagenesis, genotyping or genome annotation, protein-protein interactions or protein-nucleic acid interactions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/28—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for programming tools or database systems, e.g. ontologies, heterogeneous data integration, data warehousing or computing architectures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/22—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for sequence comparison involving nucleotides or amino acids, e.g. homology search, motif or SNP [Single-Nucleotide Polymorphism] discovery or sequence alignment
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/12—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for modelling or simulation in systems biology, e.g. probabilistic or dynamic models, gene-regulatory networks, protein interaction networks or metabolic networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/24—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for machine learning, data mining or biostatistics, e.g. pattern finding, knowledge discovery, rule extraction, correlation, clustering or classification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/20—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for hybridisation or gene expression, e.g. microarrays, sequencing by hybridisation, normalisation, profiling, noise correction models, expression ratio estimation, probe design or probe optimisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/70—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds
- G06F19/706—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds for drug design with the emphasis on a therapeutic agent, e.g. ligand-biological target interactions, pharmacophore generation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/30—Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
- G06F19/34—Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/48—Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6803—General methods of protein analysis not limited to specific proteins or families of proteins
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/48—Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/12—Computer systems based on biological models using genetic models
- G06N3/126—Genetic algorithms, i.e. information processing using digital simulations of the genetic system
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zitnik et al. | Machine learning for integrating data in biology and medicine: Principles, practice, and opportunities | |
Cunningham et al. | Biophysical prediction of protein–peptide interactions and signaling networks using machine learning | |
Peng et al. | Protein–protein interactions: detection, reliability assessment and applications | |
A Theofilatos et al. | Computational approaches for the prediction of protein-protein interactions: a survey | |
Xia et al. | Analyzing cellular biochemistry in terms of molecular networks | |
Shehu et al. | A survey of computational methods for protein function prediction | |
Zhu et al. | The analysis of the drug–targets based on the topological properties in the human protein–protein interaction network | |
Wang et al. | A complex-based reconstruction of the Saccharomyces cerevisiae interactome | |
Fernández-Torras et al. | Connecting chemistry and biology through molecular descriptors | |
S. Bernardes | A review of protein function prediction under machine learning perspective | |
Wang et al. | Protein‐protein interaction networks as miners of biological discovery | |
Reimand et al. | Domain-mediated protein interaction prediction: From genome to network | |
Tang et al. | Machine learning on protein–protein interaction prediction: models, challenges and trends | |
Kozlovskii et al. | Protein–peptide binding site detection using 3D convolutional neural networks | |
Lopez-del Rio et al. | Evaluation of cross-validation strategies in sequence-based binding prediction using deep learning | |
Meng et al. | Review and comparative analysis of machine learning-based phage virion protein identification methods | |
Liu et al. | aPRBind: protein–RNA interface prediction by combining sequence and I-TASSER model-based structural features learned with convolutional neural networks | |
Vyas et al. | Application of genetic programming (GP) formalism for building disease predictive models from protein-protein interactions (PPI) data | |
Singh et al. | Prediction of replication sites in Saccharomyces cerevisiae genome using DNA segment properties: multi-view ensemble learning (MEL) approach | |
Ta et al. | A novel method for assigning functional linkages to proteins using enhanced phylogenetic trees | |
Morishita et al. | Recent applications of artificial intelligence in RNA-targeted small molecule drug discovery | |
Liu et al. | Computational intelligence and bioinformatics | |
Klammer et al. | Pareto optimization identifies diverse set of phosphorylation signatures predicting response to treatment with dasatinib | |
Guo et al. | 3D genome assisted protein–protein interaction prediction | |
Li et al. | Simultaneous Prediction of Interaction Sites on the Protein and Peptide Sides of Complexes through Multilayer Graph Convolutional Networks |