Zimmermann et al., 2011 - Google Patents
Improving cascade of classifiers by sliding window alignment in betweenZimmermann et al., 2011
View PDF- Document ID
- 17824123649727778396
- Author
- Zimmermann K
- Hurych D
- Svoboda T
- Publication year
- Publication venue
- The 5th International Conference on Automation, Robotics and Applications
External Links
Snippet
We improve an object detector based on cascade of classifiers by a local alignment of the sliding window. The detector needs to operate on a relatively sparse grid in order to achieve a real time performance on high-resolution images. The proposed local alignment in the …
- 238000001514 detection method 0 abstract description 32
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6256—Obtaining sets of training patterns; Bootstrap methods, e.g. bagging, boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6201—Matching; Proximity measures
- G06K9/6202—Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/68—Methods or arrangements for recognition using electronic means using sequential comparisons of the image signals with a plurality of references in which the sequence of the image signals or the references is relevant, e.g. addressable memory
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
- G06K9/4604—Detecting partial patterns, e.g. edges or contours, or configurations, e.g. loops, corners, strokes, intersections
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6279—Classification techniques relating to the number of classes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/20—Image acquisition
- G06K9/32—Aligning or centering of the image pick-up or image-field
- G06K9/3233—Determination of region of interest
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6288—Fusion techniques, i.e. combining data from various sources, e.g. sensor fusion
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00221—Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
- G06K9/00288—Classification, e.g. identification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00221—Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
- G06K9/00268—Feature extraction; Face representation
- G06K9/00281—Local features and components; Facial parts ; Occluding parts, e.g. glasses; Geometrical relationships
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00624—Recognising scenes, i.e. recognition of a whole field of perception; recognising scene-specific objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Fast human detection using a novel boosted cascading structure with meta stages | |
US7526101B2 (en) | Tracking objects in videos with adaptive classifiers | |
Zhang et al. | A survey of recent advances in face detection | |
Epshtein et al. | Feature hierarchies for object classification | |
Satpathy et al. | Human detection by quadratic classification on subspace of extended histogram of gradients | |
Zhang et al. | Point-to-set distance metric learning on deep representations for visual tracking | |
JP2008310796A (en) | Computer implemented method for constructing classifier from training data detecting moving object in test data using classifier | |
Wang et al. | Traffic sign detection using a cascade method with fast feature extraction and saliency test | |
Zhang et al. | Detection and tracking of multiple humans with extensive pose articulation | |
Cho et al. | Vision-based bicyclist detection and tracking for intelligent vehicles | |
Yuan et al. | A combined pedestrian detection method based on haar-like features and hog features | |
Spinello et al. | Multimodal People Detection and Tracking in Crowded Scenes. | |
CN108509861B (en) | Target tracking method and device based on combination of sample learning and target detection | |
Liu et al. | An efficient HOG–ALBP feature for pedestrian detection | |
Parate et al. | Global-patch-hybrid template-based arbitrary object tracking with integral channel features | |
Okuma et al. | Self-learning for player localization in sports video | |
Zimmermann et al. | Improving cascade of classifiers by sliding window alignment in between | |
Chen et al. | Rapid and precise object detection based on color histograms and adaptive bandwidth mean shift | |
Pairo et al. | A delay-free and robust object tracking approach for robotics applications | |
Zimmermann et al. | Non-rigid object detection with localinterleaved sequential alignment (LISA) | |
Thayananthan et al. | Likelihood Models For Template Matching using the PDF Projection Theorem. | |
Saberian et al. | Multi-resolution cascades for multiclass object detection | |
Binh | Online boosting-based object tracking | |
Yoo et al. | Action-driven object detection with top-down visual attentions | |
Park et al. | Fast shadow detection for urban autonomous driving applications |