[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Li et al., 2017 - Google Patents

New structurally integrated layered-spinel lithium-cobalt-manganese-oxide composite cathode materials for lithium-ion batteries

Li et al., 2017

Document ID
1773107404998135134
Author
Li D
Zhang H
Wang C
Song D
Shi X
Zhang L
Publication year
Publication venue
Journal of Alloys and Compounds

External Links

Snippet

Abstract The layered-spinel Li-Co-Mn-O composites {x [0.5 Li (CoMn) O 4]·(1-x)[0.5 Li 2 MnO 3· 0.5 LiCoO 2](x= 0, 0.25, 0.50, 0.75 and 1)} which consist of layered Li 1.2 Co 0.4 Mn 0.4 O 2 and spinel LiCoMnO 4 are designed, for Li 1.2 Co 0.4 Mn 0.4 O 2 may deliver a high …
Continue reading at www.sciencedirect.com (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/12Battery technology
    • Y02E60/122Lithium-ion batteries
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • H01M4/5825Oxygenated metallic slats or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes

Similar Documents

Publication Publication Date Title
Chen et al. Oxygen vacancies in SnO2 surface coating to enhance the activation of layered Li-Rich Li1. 2Mn0. 54Ni0. 13Co0. 13O2 cathode material for Li-ion batteries
Zhan et al. Influence of annealing atmosphere on Li2ZrO3-coated LiNi0. 6Co0. 2Mn0. 2O2 and its high-voltage cycling performance
Chong et al. Suppressing capacity fading and voltage decay of Li-rich layered cathode material by a surface nano-protective layer of CoF2 for lithium-ion batteries
Zhou et al. The enhanced rate performance of LiFe 0.5 Mn 0.5 PO 4/C cathode material via synergistic strategies of surfactant-assisted solid state method and carbon coating
Shi et al. Enhanced cycling stability of Li [Li0. 2Mn0. 54Ni0. 13Co0. 13] O2 by surface modification of MgO with melting impregnation method
Miao et al. Li2ZrO3-coated 0.4 Li2MnO3· 0.6 LiNi1/3Co1/3Mn1/3O2 for high performance cathode material in lithium-ion battery
Liu et al. Mg gradient-doped LiNi0. 5Mn1. 5O4 as the cathode material for Li-ion batteries
Wang et al. Synthesis of LiNi0. 5Mn1. 5O4 cathode material with improved electrochemical performances through a modified solid-state method
Yin et al. Metal-organic framework-mediated synthesis of LiNi0. 5Mn1. 5O4: Tuning the Mn3+ content and electrochemical performance by organic ligands
Zhong et al. Synthesis and electrochemical properties of LiNi0. 8CoxMn0. 2-xO2 positive-electrode material for lithium-ion batteries
Wu et al. TiP2O7-coated LiNi0. 8Co0. 15Al0. 05O2 cathode materials with improved thermal stability and superior cycle life
Heiba et al. Influence of Mg-deficiency on the functional properties of magnesium ferrite anode material
Xu et al. Facile synthesis of P2-type Na 0.4 Mn 0.54 Co 0.46 O 2 as a high capacity cathode material for sodium-ion batteries
Dai et al. Simultaneously improved capacity and initial coulombic efficiency of Li-rich cathode Li [Li0. 2Mn0. 54Co0. 13Ni0. 13] O2 by enlarging crystal cell from a nanoplate precursor
Wan et al. Ni/Mn ratio and morphology-dependent crystallographic facet structure and electrochemical properties of the high-voltage spinel LiNi 0.5 Mn 1.5 O 4 cathode material
Sun et al. Synthesis of high power type LiMn1. 5Ni0. 5O4 by optimizing its preparation conditions
Chen et al. Polyhedral ordered LiNi0. 5Mn1. 5O4 spinel with excellent electrochemical properties in extreme conditions
Li et al. New structurally integrated layered-spinel lithium-cobalt-manganese-oxide composite cathode materials for lithium-ion batteries
Shu et al. Tuning the ratio of Al2O3 to LiAlO2 in the composite coating layer for high performance LiNi0. 5Mn1. 5O4 materials
Pang et al. Improved electrochemical properties of spinel LiNi0. 5Mn1. 5O4 cathode materials by surface modification with RuO2 nanoparticles
Ding et al. Preparation and performance characterization of AlF3 as interface stabilizer coated Li1. 24Ni0. 12Co0. 12Mn0. 56O2 cathode for lithium-ion batteries
Zeng et al. Effect of cationic and anionic substitutions on the electrochemical properties of LiNi0. 5Mn1. 5O4 spinel cathode materials
Bai et al. A novel approach to improve the electrochemical performances of layered LiNi1/3Co1/3Mn1/3O2 cathode by YPO4 surface coating
Wang et al. Effects of Na+ doping on crystalline structure and electrochemical performances of LiNi0. 5Mn1. 5O4 cathode material
Feng et al. Synthesis and electrochemical properties of non-stoichiometric Li–Mn-spinel (Li1. 02MxMn1. 95O4− yFy) for lithium ion battery application