[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Rothe et al., 2019 - Google Patents

Enhanced IIP2 Chopper Stabilized Direct Conversion Mixer Architecture

Rothe et al., 2019

Document ID
17538874260072578218
Author
Rothe R
Zele R
Publication year
Publication venue
2019 32nd International Conference on VLSI Design and 2019 18th International Conference on Embedded Systems (VLSID)

External Links

Snippet

This paper presents an improved Second Order Input Intercept Point (IIP2) Direct Conversion Mixer architecture by introducing chopping in the standard active double balanced mixer. The mixing frequency required is half of the RF frequency. This technique …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • H03D7/1425Balanced arrangements with transistors
    • H03D7/1441Balanced arrangements with transistors using field-effect transistors
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • H03D7/1425Balanced arrangements with transistors
    • H03D7/1433Balanced arrangements with transistors using bipolar transistors
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D2200/00Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
    • H03D2200/0041Functional aspects of demodulators
    • H03D2200/0088Reduction of intermodulation, nonlinearities, adjacent channel interference; intercept points of harmonics or intermodulation products
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/16Multiple-frequency-changing
    • H03D7/165Multiple-frequency-changing at least two frequency changers being located in different paths, e.g. in two paths with carriers in quadrature
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • H03D7/1425Balanced arrangements with transistors
    • H03D7/1458Double balanced arrangements, i.e. where both input signals are differential
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D2200/00Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
    • H03D2200/0041Functional aspects of demodulators
    • H03D2200/0049Analog multiplication for detection
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D2200/00Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
    • H03D2200/0001Circuit elements of demodulators
    • H03D2200/0033Current mirrors
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D2200/00Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
    • H03D2200/0041Functional aspects of demodulators
    • H03D2200/0086Reduction or prevention of harmonic frequencies
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D2200/00Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
    • H03D2200/0041Functional aspects of demodulators
    • H03D2200/0043Bias and operating point
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D9/00Demodulation or transference of modulation of modulated electromagnetic waves
    • H03D9/06Transference of modulation using distributed inductance and capacitance
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D3/00Demodulation of angle-, frequency- or phase- modulated oscillations
    • H03D3/007Demodulation of angle-, frequency- or phase- modulated oscillations by converting the oscillations into two quadrature related signals
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D3/00Demodulation of angle-, frequency- or phase- modulated oscillations
    • H03D3/006Demodulation of angle-, frequency- or phase- modulated oscillations by sampling the oscillations and further processing the samples, e.g. by computing techniques
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B19/00Generation of oscillations by non-regenerative frequency multiplication or division of a signal from a separate source
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/26Circuits for superheterodyne receivers
    • H04B1/28Circuits for superheterodyne receivers the receiver comprising at least one semiconductor device having three or more electrodes
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements

Similar Documents

Publication Publication Date Title
US7577418B2 (en) Sub-harmonic mixer and down converter with the same
JP4335804B2 (en) RF front end with reduced carrier leakage
US7986192B2 (en) Harmonic rejection mixer and harmonic rejection mixing method
US6933766B2 (en) Apparatus and method for improved chopping mixer
US6564045B1 (en) Broadband frequency multiplier
De Padova et al. Design of a GaN-on-Si single-balanced resistive mixer for Ka-band satcom
JP2009147943A (en) Receiver, tuner, and method of processing television signal
CN107404288B (en) Frequency mixer device
Wang et al. A 28-GHz high linearity up-conversion mixer using second-harmonic injection technique in 28-nm CMOS technology
Kibaroglu et al. A 0.05–6 GHz voltage-mode harmonic rejection mixer with up to 30 dBm in-band IIP3 and 35 dBc HRR in 32 nm SOI CMOS
Cha et al. A CMOS harmonic rejection mixer with mismatch calibration circuitry for digital TV tuner applications
Hussain et al. Concurrent dual-band heterodyne interferometric receiver for multistandard and multifunction wireless systems
KR102338073B1 (en) A quadrature passive mixer and frequency down-converter for enhancing IIP2
Bouhamame et al. A 60 dB harmonic rejection mixer for digital terrestrial TV tuner
Svitek et al. 5-6 GHz SiGe active I/Q subharmonic mixers with power supply noise effect characterization
Im et al. A wideband digital TV receiver front-end with noise and distortion cancellation
Upadhyaya et al. A 5.6-GHz CMOS doubly balanced sub-harmonic mixer for direct conversion-zero IF receiver
Rothe et al. Enhanced IIP2 Chopper Stabilized Direct Conversion Mixer Architecture
Im et al. A TV receiver front-end with linearized LNA and current-summing harmonic rejection mixer
Li et al. A 16-53-GHZ CMOS down-conversion mixer with linearized active balun
EP2893634A1 (en) A sub-harmonic mixer
Munusamy et al. A highly linear CMOS down conversion double balanced mixer
Cha et al. A TV-band harmonic rejection mixer adopting a $ g_ {m} $ linearization technique
Wei et al. A broadband low power high isolation double-balanced subharmonic mixer for 4G applications
TWI324449B (en) Sub-harmonic mixer and down converter with the same