Bosco, 2016 - Google Patents
Spectrally efficient multiplexing: NYQUIST‐WDMBosco, 2016
- Document ID
- 17527429624190685848
- Author
- Bosco G
- Publication year
- Publication venue
- Enabling Technologies for High Spectral‐Efficiency Coherent Optical Communication Networks
External Links
Snippet
This chapter explains the fundamental Nyquist‐wavelength‐division multiplexing (WDM) signaling theory and discusses various aspects regarding its implementation and application in coherent optical communication systems to improve the transport spectral …
- 230000003287 optical 0 abstract description 70
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/501—Structural aspects
- H04B10/503—Laser transmitters
- H04B10/505—Laser transmitters using external modulation
- H04B10/5053—Laser transmitters using external modulation using a parallel, i.e. shunt, combination of modulators
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/54—Intensity modulation
- H04B10/541—Digital intensity or amplitude modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2507—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
- H04B10/2543—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to fibre non-linearities, e.g. Kerr effect
- H04B10/2557—Cross-phase modulation [XPM]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; Arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks ; Receiver end arrangements for processing baseband signals
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03012—Arrangements for removing intersymbol interference operating in the time domain
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; Arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks ; Receiver end arrangements for processing baseband signals
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L2025/03433—Arrangements for removing intersymbol interference characterised by equaliser structure
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/61—Coherent receivers i.e., optical receivers using an optical local oscillator
- H04B10/616—Details of the electronic signal processing in coherent optical receivers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; Arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks ; Receiver end arrangements for processing baseband signals
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03178—Arrangements involving sequence estimation techniques
- H04L25/03248—Arrangements for operating in conjunction with other apparatus
- H04L25/03254—Operation with other circuitry for removing intersymbol interference
- H04L25/03261—Operation with other circuitry for removing intersymbol interference with impulse-response shortening filters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/548—Phase or frequency modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/5167—Duo-binary; Alternative mark inversion; Phase shaped binary transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/66—Non-coherent receivers, e.g. using direct detection
- H04B10/67—Optical arrangements in the receiver
- H04B10/676—Optical arrangements in the receiver for all-optical demodulation of the input optical signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/18—Phase-modulated carrier systems, i.e. using phase-shift keying includes continuous phase systems
- H04L27/20—Modulator circuits; Transmitter circuits
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/32—Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
- H04L27/34—Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2625086C (en) | Methods and apparatus for optical transmission of digital signals | |
Rafique et al. | Digital preemphasis in optical communication systems: On the DAC requirements for terabit transmission applications | |
EP2672638B1 (en) | Methods and apparatus for pre and post equalization in optical communications systems | |
Zhou et al. | Advanced DSP for 400 Gb/s and beyond optical networks | |
Wang et al. | Generation of spectrally efficient Nyquist-WDM QPSK signals using digital FIR or FDE filters at transmitters | |
Stojanović et al. | Modified Gardner phase detector for Nyquist coherent optical transmission systems | |
Rafique et al. | Digital pre-emphasis in optical communication systems: On the nonlinear performance | |
Mazurczyk | Spectral shaping in long haul optical coherent systems with high spectral efficiency | |
Wang et al. | Optimization of DSP to generate spectrally efficient 16QAM Nyquist-WDM signals | |
Xu et al. | Pulse-overlapping super-Nyquist WDM system | |
Zhu et al. | Sub-sampling generation of ultra-high baud rate PAM/QAM signals via high-order partial response narrowing | |
Bosco | Spectrally efficient multiplexing: NYQUIST‐WDM | |
Kikuchi | Multilevel signaling technology for increasing transmission capacity in high-speed short-distance optical fiber communication | |
Bayvel et al. | Digital signal processing (DSP) and its applications in optical communications systems | |
Yu et al. | Digital Signal Processing for High-speed Optical Communication | |
Behrens | Mitigation of nonlinear impairments for advanced optical modulation formats | |
US11283527B2 (en) | Optical transmitting system, optical transmitting apparatus, optical receiving apparatus and transfer function estimating method | |
Rios-Müller et al. | Practical approaches to 400G single-carrier submarine transmission | |
Xiang et al. | Performance comparison of offset-16QAM and 16QAM for Nyquist WDM superchannel with digital spectral shaping | |
Müller | Advanced modulation formats and signal processing for high speed spectrally efficient optical communications | |
Li | Digital Linearization of High Capacity and Spectrally Efficient Direct Detection Optical Transceivers | |
de Souza Rosa et al. | Digital pre-distortion employing complex FIR filters from receiver side two stage dynamic equalizer for coherent optical systems | |
Fludger et al. | 1Tb/s real-time 4× 40 Gbaud DP-16QAM super-channel using CFP2-ACO pluggable modules over 625 km of standard fiber | |
Colavolpe et al. | Next-generation long-haul optical links: higher spectral efficiency through time-frequency packing | |
Pan et al. | Digital signal processing techniques in Nyquist-WDM transmission systems |