[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Rao et al., 2019 - Google Patents

Measurement of electron density and temperature from laser-induced nitrogen plasma at elevated pressure (1–6 bar)

Rao et al., 2019

View HTML @Full View
Document ID
17521919995848089297
Author
Rao A
Gragston M
Patnaik A
Hsu P
Shattan M
Publication year
Publication venue
Optics Express

External Links

Snippet

Laser-induced plasmas experience Stark broadening and shifts of spectral lines carrying spectral signatures of plasma properties. In this paper, we report time-resolved Stark broadening measurements of a nitrogen triplet emission line at 1–6 bar ambient pressure in …
Continue reading at opg.optica.org (HTML) (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/636Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited using an arrangement of pump beam and probe beam; using the measurement of optical non-linear properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/718Laser microanalysis, i.e. with formation of sample plasma
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N2021/653Coherent methods [CARS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infra-red light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • G01N2021/396Type of laser source
    • G01N2021/399Diode laser
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/74Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using flameless atomising, e.g. graphite furnaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/26Investigating or analysing materials by specific methods not covered by the preceding groups oils; viscous liquids; paints; inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colour
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry

Similar Documents

Publication Publication Date Title
Rao et al. Measurement of electron density and temperature from laser-induced nitrogen plasma at elevated pressure (1–6 bar)
Rai et al. Optical emission from laser-induced breakdown plasma of solid and liquid samples in the presence of a magnetic field
Guo et al. Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement
Hou et al. Development and performance evaluation of self-absorption-free laser-induced breakdown spectroscopy for directly capturing optically thin spectral line and realizing accurate chemical composition measurements
Han et al. Kinetics of optically pumped Ar metastables
Zhang et al. Time-resolved dual-comb measurement of number density and temperature in a laser-induced plasma
Liu et al. Laser-induced breakdown spectroscopy enhanced by a micro torch
Mousavi et al. Identification of atomic lines and molecular bands of benzene and carbon disulfide liquids by using LIBS
Patnaik et al. Simultaneous LIBS signal and plasma density measurement for quantitative insight into signal instability at elevated pressure
Harilal et al. High-resolution spectroscopy of laser ablation plumes using laser-induced fluorescence
Shen et al. Detection of trace phosphorus in steel using laser-induced breakdown spectroscopy combined with laser-induced fluorescence
He et al. Generation of high-temperature and low-density plasmas for improved spectral resolutions in laser-induced breakdown spectroscopy
Stauffer et al. Laser-induced fluorescence detection of hydroxyl (OH) radical by femtosecond excitation
Harilal et al. Two-dimensional fluorescence spectroscopy of laser-produced plasmas
Kautz et al. Hydrogen isotopic analysis of nuclear reactor materials using ultrafast laser-induced breakdown spectroscopy
Parigger et al. Hydrogen alpha laser ablation plasma diagnostics
Liu et al. Effect of laser pulse energy on orthogonal double femtosecond pulse laser-induced breakdown spectroscopy
Feng et al. Investigation of laser-induced breakdown spectroscopy of a liquid jet
Gragston et al. Emissions in short-gated ns/ps/fs-LIBS for fuel-to-air ratio measurements in methane-air flames
Nicolodelli et al. Determination of Pb in soils by double-pulse laser-induced breakdown spectroscopy assisted by continuum wave-diode laser-induced fluorescence
Kearney Bandwidth optimization of femtosecond pure-rotational coherent anti-Stokes Raman scattering by pump/Stokes spectral focusing
Harilal et al. Standoff analysis of laser-produced plasmas using laser-induced fluorescence
Hou et al. Resonance/non-resonance doublet-based self-absorption-free LIBS for quantitative analysis with a wide measurement range
Gragston et al. Time-gated single-shot picosecond laser-induced breakdown spectroscopy (ps-libs) for equivalence-ratio measurements
Zhang et al. Characterization of local thermodynamic equilibrium in a laser-induced aluminum alloy plasma