Arshad et al., 2018 - Google Patents
An efficient Sm and Ge co-doped ceria nanocomposite electrolyte for low temperature solid oxide fuel cellsArshad et al., 2018
- Document ID
- 17573661990167277366
- Author
- Arshad M
- Raza R
- Ahmad M
- Abbas G
- Ali A
- Rafique A
- Ullah M
- Rauf S
- Asghar M
- Mushtaq N
- Atiq S
- Naseem S
- Publication year
- Publication venue
- Ceramics International
External Links
Snippet
In this study we present a new nanocomposite electrolyte based on samarium (Sm) and germanium (Ge) co-doped ceria Ce 0.7 Sm 0.15 Ge 0.15 O 2-δ (SGeDC). The nanocomposite electrolyte was prepared using co-precipitation method. The crystal structure …
- OFJATJUUUCAKMK-UHFFFAOYSA-N Cerium(IV) oxide [O-2]=[Ce+4]=[O-2] 0 title abstract description 86
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
- Y02E60/52—Fuel cells characterised by type or design
- Y02E60/521—Proton Exchange Membrane Fuel Cells [PEMFC]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
- Y02E60/52—Fuel cells characterised by type or design
- Y02E60/525—Solid Oxide Fuel Cells [SOFC]
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/124—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
- H01M8/1246—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9016—Oxides, hydroxides or oxygenated metallic salts
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Arshad et al. | An efficient Sm and Ge co-doped ceria nanocomposite electrolyte for low temperature solid oxide fuel cells | |
Shah et al. | The semiconductor SrFe0. 2Ti0. 8O3-δ-ZnO heterostructure electrolyte fuel cells | |
Lv et al. | Structure and electrochemical properties of Sm0. 5Sr0. 5Co1− xFexO3− δ cathodes for solid oxide fuel cells | |
Pang et al. | Systematic evaluation of cobalt-free Ln0. 5Sr0· 5Fe0· 8Cu0· 2O3− δ (Ln= La, Pr, and Nd) as cathode materials for intermediate-temperature solid oxide fuel cells | |
Peña-Martínez et al. | Performance of XSCoF (X= Ba, La and Sm) and LSCrX′(X′= Mn, Fe and Al) perovskite-structure materials on LSGM electrolyte for IT-SOFC | |
Xin et al. | Development of the spinel powder reduction technique for solid oxide fuel cell interconnect coating | |
Ricote et al. | Microstructure and performance of La0. 58Sr0. 4Co0. 2Fe0. 8O3− δ cathodes deposited on BaCe0. 2Zr0. 7Y0. 1O3− δ by infiltration and spray pyrolysis | |
Hussain et al. | Effect of iron oxide co-doping on structural, thermal, and electrochemical properties of samarium doped ceria solid electrolyte | |
Singh | Electrical conductivity of YSZ-SDC composite solid electrolyte synthesized via glycine-nitrate method | |
Raza et al. | Electrochemical study of the composite electrolyte based on samaria-doped ceria and containing yttria as a second phase | |
Khan et al. | Comparative study of the nano-composite electrolytes based on samaria-doped ceria for low temperature solid oxide fuel cells (LT-SOFCs) | |
Ding et al. | SmBa0. 5Sr0. 5Cu2O5+ δ and SmBa0. 5Sr0. 5CuFeO5+ δ layered perovskite oxides as cathodes for IT-SOFCs | |
Wang et al. | Synthesis and properties of (La0. 75Sr0. 25) 0.95 MnO3±δ nano-powder prepared via Pechini route | |
Garcia et al. | Citrate–hydrothermal synthesis, structure and electrochemical performance of La0. 6Sr0. 4Co0. 2Fe0. 8O3− δ cathodes for IT-SOFCs | |
Zhou et al. | Application of La0. 3Sr0. 7Fe0. 7Ti0. 3O3-δ/GDC electrolyte in LT-SOFC | |
Xia et al. | The competitive ionic conductivities in functional composite electrolytes based on the series of M-NLCO (M= Ce0. 8Sm0. 2O2-δ, Ce0. 8Gd0. 2O2-δ, Ce0. 8Y0. 2O2-δ; NLCO= 0.53 Li2CO3–0.47 Na2CO3) | |
Batool et al. | Structural and electrochemical study of Ba0. 15Cu0. 15Ni0. 10Zn0. 60 oxide anode for low temperature solid oxide fuel cell | |
Altaf et al. | Synthesis and characterization of co-doped ceria-based electrolyte material for low temperature solid oxide fuel cell | |
Mumtaz et al. | Nano grained Sr and Zr co-doped BaCeO3 electrolytes for intermediate temperature solid oxide fuel cells | |
Cai et al. | Enhanced electrochemical performance of La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3− δ cathode via Ba-doping for intermediate-temperature solid oxide fuel cells | |
Lü et al. | PrBa0. 5Sr0. 5Co2O5+ x as cathode material based on LSGM and GDC electrolyte for intermediate-temperature solid oxide fuel cells | |
Hussain et al. | Comparative electrochemical investigation of zinc based nano-composite anode materials for solid oxide fuel cell | |
Jie et al. | Synthesis and characterization of calcium and manganese-doped rare earth oxide La1-xCaxFe0. 9Mn0. 1O3-δ for cathode material in IT-SOFC | |
Bo et al. | Rare-earth elements doped Nd2CuO4 as Cu-based cathode for intermediate-temperature solid oxide fuel cells | |
Padmasree et al. | Synthesis and characterization of Ca3-xLaxCo4-yCuyO9+ δ cathodes for intermediate temperature solid oxide fuel cells |