Kaun et al., 1993 - Google Patents
High temperature lithium/sulfide batteriesKaun et al., 1993
- Document ID
- 17541379192766176198
- Author
- Kaun T
- Nelson P
- Redey L
- Vissers D
- Henriksen G
- Publication year
- Publication venue
- Electrochimica acta
External Links
Snippet
Abstract Bipolar Li Al/FeS and Li Al/FeS 2 batteries are being developed for electric vehicle (EV) applications by Argonne National Laboratory. Current technology employs a two-phase Li alloy negative electrode, low melting point LiCl—rich LiCl LiBr KBr molten …
- 229910052744 lithium 0 title abstract description 83
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
- H01M4/581—Chalcogenides or intercalation compounds thereof
- H01M4/5815—Sulfides
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/36—Accumulators not provided for in groups H01M10/05-H01M10/34
- H01M10/39—Working at high temperature
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/12—Battery technology
- Y02E60/122—Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M2/00—Constructional details or processes of manufacture of the non-active parts
- H01M2/14—Separators; Membranes; Diaphragms; Spacing elements
- H01M2/16—Separators; Membranes; Diaphragms; Spacing elements characterised by the material
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/34—Gastight accumulators
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M2/00—Constructional details or processes of manufacture of the non-active parts
- H01M2/20—Current conducting connections for cells
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M12/00—Hybrid cells; Manufacture thereof
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kaun et al. | High temperature lithium/sulfide batteries | |
US3716409A (en) | Cathodes for secondary electrochemical power-producing cells | |
KR100320999B1 (en) | Rechargeable lithium battery | |
Lu et al. | The effects of temperature on the electrochemical performance of sodium–nickel chloride batteries | |
US3947291A (en) | Electrochemical cell assembled in discharged state | |
CA1043867A (en) | Cathode comprising a transition metal chalcogenide in a carbon matrix | |
US4012562A (en) | Modular electrical energy storage device | |
Gay et al. | Performance Characteristics of Solid Lithium‐Aluminum Alloy Electrodes | |
Inoishi et al. | A Single-Phase, All-Solid-State Sodium Battery Using Na 3− x V 2− x Zr x (PO 4) 3 as the Cathode, Anode, and Electrolyte. | |
US4003753A (en) | Electrode structure for electrical energy storage device | |
Scott et al. | Sealed-cell nickel-cadmium battery applications manual | |
EP3482443B1 (en) | Metal plating-based electrical energy storage cell | |
US20210359338A1 (en) | Solid state battery, ceramic electrolyte structure and methods of making | |
US5736275A (en) | High power bipolar battery/cells with enhanced overcharge tolerance | |
CA1065013A (en) | Method of preparing an electrochemical cell in uncharged state | |
AU2013293157B2 (en) | Hybrid energy storage devices having sodium | |
Henriksen et al. | Lithium-aluminum/iron sulfide batteries | |
US4851306A (en) | Molten salt electrolyte battery cell with overcharge tolerance | |
US5437940A (en) | High power energy compression device | |
Kumar et al. | Introduction to electrochemical cells | |
Tomczuk et al. | Evaluation of High Temperature LiAl/TiS2 Cells | |
US4490448A (en) | Lithium/copper oxide or lithium/cadmium oxide organic electrolyte cell | |
Kaun | Rechargeable Molten-Electrolyte Lithium Batteries--A Status Report | |
Vissers | Lithium-Aluminum/Iron Sulfide Batteries | |
US3997363A (en) | Modular electrical energy storage device |