O'Neill et al., 2013 - Google Patents
Flow cytometry bioinformaticsO'Neill et al., 2013
View HTML- Document ID
- 17477037638309751024
- Author
- O'Neill K
- Aghaeepour N
- Špidlen J
- Brinkman R
- Publication year
- Publication venue
- PLoS computational biology
External Links
Snippet
Flow cytometry bioinformatics is the application of bioinformatics to flow cytometry data, which involves storing, retrieving, organizing, and analyzing flow cytometry data using extensive computational resources and tools. Flow cytometry bioinformatics requires …
- 238000000684 flow cytometry 0 title abstract description 71
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30386—Retrieval requests
- G06F17/30424—Query processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30587—Details of specialised database models
- G06F17/30595—Relational databases
- G06F17/30598—Clustering or classification
- G06F17/30601—Clustering or classification including cluster or class visualization or browsing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/48—Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30289—Database design, administration or maintenance
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30557—Details of integrating or interfacing systems involving at least one database management system
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30312—Storage and indexing structures; Management thereof
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/3061—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F17/30705—Clustering or classification
- G06F17/3071—Clustering or classification including class or cluster creation or modification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/28—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for programming tools or database systems, e.g. ontologies, heterogeneous data integration, data warehousing or computing architectures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Electro-optical investigation, e.g. flow cytometers
- G01N15/1456—Electro-optical investigation, e.g. flow cytometers without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
- G01N15/1459—Electro-optical investigation, e.g. flow cytometers without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/20—Handling natural language data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/10—Office automation, e.g. computer aided management of electronic mail or groupware; Time management, e.g. calendars, reminders, meetings or time accounting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00127—Acquiring and recognising microscopic objects, e.g. biological cells and cellular parts
- G06K9/00147—Matching; Classification
Similar Documents
Publication | Publication Date | Title |
---|---|---|
O'Neill et al. | Flow cytometry bioinformatics | |
Quintelier et al. | Analyzing high-dimensional cytometry data using FlowSOM | |
Ashhurst et al. | Integration, exploration, and analysis of high‐dimensional single‐cell cytometry data using Spectre | |
Li et al. | Gating mass cytometry data by deep learning | |
Saeys et al. | Computational flow cytometry: helping to make sense of high-dimensional immunology data | |
Weber et al. | Comparison of clustering methods for high‐dimensional single‐cell flow and mass cytometry data | |
Buchser et al. | Assay development guidelines for image-based high content screening, high content analysis and high content imaging | |
Pyne et al. | Automated high-dimensional flow cytometric data analysis | |
Stöter et al. | CellProfiler and KNIME: open source tools for high content screening | |
Robinson et al. | Computational analysis of high-throughput flow cytometry data | |
Shimko et al. | COPASutils: an R package for reading, processing, and visualizing data from COPAS large-particle flow cytometers | |
Rogers et al. | FlowFP: A bioconductor package for fingerprinting flow cytometric data | |
Becht et al. | Reverse-engineering flow-cytometry gating strategies for phenotypic labelling and high-performance cell sorting | |
Meehan et al. | AutoGate: automating analysis of flow cytometry data | |
Angel et al. | A simple, scalable approach to building a cross-platform transcriptome atlas | |
Finak et al. | QUAliFiER: An automated pipeline for quality assessment of gated flow cytometry data | |
Gil et al. | Towards continuous scientific data analysis and hypothesis evolution | |
Maan et al. | Characterizing the impacts of dataset imbalance on single-cell data integration | |
Zanini et al. | Northstar enables automatic classification of known and novel cell types from tumor samples | |
Lin et al. | Discriminative variable subsets in Bayesian classification with mixture models, with application in flow cytometry studies | |
Wang et al. | Data-driven flow cytometry analysis | |
Stöter et al. | CellProfiler and KNIME: open-source tools for high-content screening | |
Baker et al. | emObject: domain specific data abstraction for spatial omics | |
Meehan et al. | Automated subset identification and characterization pipeline for multidimensional flow and mass cytometry data clustering and visualization | |
Healy et al. | Seeing the wood for the trees: towards improved quantification of glial cells in central nervous system tissue |