[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Akgün et al., 2014 - Google Patents

Vulnerabilities of RFID security protocol based on chaotic maps

Akgün et al., 2014

Document ID
17472092741338641762
Author
Akgün M
Uekae T
Caglayan M
Publication year
Publication venue
2014 IEEE 22nd International Conference on Network Protocols

External Links

Snippet

Many RFID authentication protocols have been proposed to provide desired security and privacy level for RFID systems. Almost all of these protocols are based on symmetric cryptography because of the limited resources of RFID tags. Recently Cheng et. Al have …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/04Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks
    • H04L63/0428Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks wherein the data content is protected, e.g. by encrypting or encapsulating the payload
    • H04L63/0435Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks wherein the data content is protected, e.g. by encrypting or encapsulating the payload wherein the sending and receiving network entities apply symmetric encryption, i.e. same key used for encryption and decryption
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1441Countermeasures against malicious traffic
    • H04L63/1458Denial of Service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2209/00Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
    • H04L2209/80Wireless
    • H04L2209/805Lightweight hardware, e.g. radio-frequency identification [RFID] or sensor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communication
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communication including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3271Cryptographic mechanisms or cryptographic arrangements for secret or secure communication including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using challenge-response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1441Countermeasures against malicious traffic
    • H04L63/1466Active attacks involving interception, injection, modification, spoofing of data unit addresses, e.g. hijacking, packet injection or TCP sequence number attacks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communication
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0838Key agreement, i.e. key establishment technique in which a shared key is derived by parties as a function of information contributed by, or associated with, each of these
    • H04L9/0841Key agreement, i.e. key establishment technique in which a shared key is derived by parties as a function of information contributed by, or associated with, each of these involving Diffie-Hellman or related key agreement protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/08Network architectures or network communication protocols for network security for supporting authentication of entities communicating through a packet data network
    • H04L63/0853Network architectures or network communication protocols for network security for supporting authentication of entities communicating through a packet data network using an additional device, e.g. smartcard, SIM or a different communication terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/08Network architectures or network communication protocols for network security for supporting authentication of entities communicating through a packet data network
    • H04L63/083Network architectures or network communication protocols for network security for supporting authentication of entities communicating through a packet data network using passwords
    • H04L63/0838Network architectures or network communication protocols for network security for supporting authentication of entities communicating through a packet data network using passwords using one-time-passwords
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/06Network architectures or network communication protocols for network security for supporting key management in a packet data network
    • H04L63/061Network architectures or network communication protocols for network security for supporting key management in a packet data network for key exchange, e.g. in peer-to-peer networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/16Implementing security features at a particular protocol layer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W12/00Security arrangements, e.g. access security or fraud detection; Authentication, e.g. verifying user identity or authorisation; Protecting privacy or anonymity
    • H04W12/06Authentication

Similar Documents

Publication Publication Date Title
Cho et al. Consideration on the brute-force attack cost and retrieval cost: A hash-based radio-frequency identification (RFID) tag mutual authentication protocol
Chien SASI: A new ultralightweight RFID authentication protocol providing strong authentication and strong integrity
Kardaş et al. Cryptanalysis of lightweight mutual authentication and ownership transfer for RFID systems
Jung et al. HRP: A HMAC-based RFID mutual authentication protocol using PUF
Dehkordi et al. Improvement of the hash-based RFID mutual authentication protocol
Rizomiliotis et al. Security analysis of the Song-Mitchell authentication protocol for low-cost RFID tags
Cheng et al. Authenticated RFID security mechanism based on chaotic maps
Alagheband et al. Unified privacy analysis of new‐found RFID authentication protocols
Akgün et al. Attacks and improvements to chaotic map‐based RFID authentication protocol
Bassil et al. A PUF-based ultra-lightweight mutual-authentication RFID protocol
Zhou et al. A lightweight anti-desynchronization RFID authentication protocol
Akgün et al. Vulnerabilities of RFID security protocol based on chaotic maps
Rahman et al. Lightweight protocol for anonymity and mutual authentication in RFID systems
Cai et al. Distributed path authentication for dynamic RFID-enabled supply chains
Safkhani et al. Tag impersonation attack on two RFID mutual authentication protocols
Asadpour et al. Scalable, privacy preserving radio‐frequency identification protocol for the internet of things
Kardaş et al. An efficient and private RFID authentication protocol supporting ownership transfer
Pourpouneh et al. An improvement over a server-less rfid authentication protocol
Sohrabi-Bonab et al. Traceability analysis of quadratic residue-based RFID authentication protocols
Nashwan SE-H: Secure and efficient hash protocol for RFID system
Sadighian et al. Afmap: Anonymous forward-secure mutual authentication protocols for rfid systems
Huang et al. An ultralightweight mutual authentication protocol for EPC C1G2 RFID tags
Morshed et al. Efficient mutual authentication protocol for radiofrequency identification systems
Erguler et al. Practical attacks and improvements to an efficient radio frequency identification authentication protocol
Mubarak et al. Mutual attestation using TPM for trusted RFID protocol