Shawn Smith et al., 2012 - Google Patents
Modeling and analysis of compaction-induced traveltime shifts for multicomponent seismic dataShawn Smith et al., 2012
View PDF- Document ID
- 17440803361735355940
- Author
- Shawn Smith S
- Tsvankin I
- Publication year
- Publication venue
- Geophysics
External Links
Snippet
Modeling of time shifts associated with time-lapse (4D) seismic surveys is helpful in evaluating reservoir depressurization and inverting for subsurface stress. Using coupled geomechanical and full-waveform seismic modeling, we study the influence of compaction …
- 238000005056 compaction 0 title abstract description 45
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. analysis, for interpretation, for correction
- G01V1/30—Analysis
- G01V1/306—Analysis for determining physical properties of the subsurface, e.g. impedance, porosity or attenuation profiles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. analysis, for interpretation, for correction
- G01V1/30—Analysis
- G01V1/301—Analysis for determining seismic cross-sections or geostructures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/60—Analysis
- G01V2210/61—Analysis by combining or comparing a seismic data set with other data
- G01V2210/614—Synthetically generated data
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. analysis, for interpretation, for correction
- G01V1/30—Analysis
- G01V1/303—Analysis for determining velocity profiles or travel times
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/003—Seismic data acquisition in general, e.g. survey design
- G01V1/005—Seismic data acquisition in general, e.g. survey design with exploration systems emitting special signals, e.g. frequency swept signals, pulse sequences or slip sweep arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/40—Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
- G01V1/44—Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging using generators and receivers in the same well
- G01V1/48—Processing data
- G01V1/50—Analysing data
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. analysis, for interpretation, for correction
- G01V1/36—Effecting static or dynamic corrections on records, e.g. correcting spread; Correlating seismic signals; Eliminating effects of unwanted energy
- G01V1/364—Seismic filtering
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. analysis, for interpretation, for correction
- G01V1/282—Application of seismic models, synthetic seismograms
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/60—Analysis
- G01V2210/67—Wave propagation modeling
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/16—Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
- G01V1/18—Receiving elements, e.g. seismometer, geophone or torque detectors, for localised single point measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/60—Analysis
- G01V2210/66—Subsurface modeling
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/40—Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
- G01V1/42—Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging using generators in one well and receivers elsewhere or vice versa
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/60—Analysis
- G01V2210/62—Physical property of subsurface
- G01V2210/624—Reservoir parameters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/60—Analysis
- G01V2210/65—Source localisation, e.g. faults, hypocenters or reservoirs
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/30—Noise handling
- G01V2210/32—Noise reduction
- G01V2210/322—Trace stacking
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/50—Corrections or adjustments related to wave propagation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V99/00—Subject matter not provided for in other groups of this subclass
- G01V99/005—Geomodels or geomodelling, not related to particular measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V11/00—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hatchell et al. | Rocks under strain: Strain-induced time-lapse time shifts are observed for depleting reservoirs | |
Herwanger et al. | Linking reservoir geomechanics and time-lapse seismics: Predicting anisotropic velocity changes and seismic attributes | |
Al-Harrasi et al. | Fracture characterization using frequency-dependent shear wave anisotropy analysis of microseismic data | |
Huang et al. | Fluid substitution effects on seismic anisotropy | |
EP2745146B1 (en) | System and method for subsurface characterization including uncertainty estimation | |
WO2014191427A2 (en) | High resolution estimation of attenuation from vertical seismic profiles | |
Tromp et al. | Effects of induced stress on seismic forward modelling and inversion | |
Baird et al. | Frequency-dependent seismic anisotropy due to fractures: Fluid flow versus scattering | |
Oppert et al. | Virtual time-lapse seismic monitoring using fully coupled flow and geomechanical simulations | |
Lumley | The Role of Geophysics in Carbon Capture | |
Felício Fuck et al. | Theory of traveltime shifts around compacting reservoirs: 3D solutions for heterogeneous anisotropic media | |
Shawn Smith et al. | Modeling and analysis of compaction-induced traveltime shifts for multicomponent seismic data | |
Huang et al. | A matrix-fracture-fluid decoupled PP reflection coefficient approximation for seismic inversion in tilted transversely isotropic media | |
Vasco et al. | The seismic response to injected carbon dioxide: Comparing observations to estimates based upon fluid flow modeling | |
Hatchell et al. | Integrating 4D seismic, geomechanics and reservoir simulation in the Valhall oil field | |
Toomey et al. | Stress arching and its impact on 4D seismic amplitudes and traveltimes | |
Rusmanugroho et al. | 3D, 9C seismic modeling and inversion of Weyburn Field data | |
Huff et al. | An eigenfunction representation of deep waveguides with application to unconventional reservoirs | |
Paris et al. | Predicting reservoir quality in the Bakken Formation, North Dakota, using petrophysics and 3C seismic data | |
Ji et al. | Calculation method and characteristic analysis of dispersion curves of Rayleigh channel waves in transversely isotropic media | |
Zhu et al. | Scattering effect on shallow gas-obscured zone imaging in Bohai PL19-3 area | |
Smith et al. | Sensitivity of compaction-induced multicomponent seismic time shifts to variations in reservoir properties | |
He et al. | Time-lapse seismic waveform modelling and attribute analysis using hydromechanical models for a deep reservoir undergoing depletion | |
Oren et al. | Image-domain DAS 3D VSP elastic transmission tomography | |
Hu et al. | Sensitivity of three-component 3D finite-difference elastic seismic modeling to inclusion parameters in HTI and TTI media with high inclusion density |