Beake et al., 2010 - Google Patents
Microtribology: new tools to fill measurement gapBeake et al., 2010
- Document ID
- 17317565977245665829
- Author
- Beake B
- Achanta S
- Liskiewicz T
- Publication year
- Publication venue
- Tribology-Materials, Surfaces & Interfaces
External Links
Snippet
Microtribological experiments are currently becoming an important tool in the tribological practice by offering maximum experimental benefits with minimum technical complexity. In this perspective paper several microtribological case studies are presented to illustrate …
- 238000005259 measurement 0 title description 19
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/40—Investigating hardness or rebound hardness
- G01N3/42—Investigating hardness or rebound hardness by performing impressions under a steady load by indentors, e.g. sphere, pyramid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0058—Kind of property studied
- G01N2203/0076—Hardness, compressibility or resistance to crushing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/06—Indicating or recording means; Sensing means
- G01N2203/0617—Electrical or magnetic indicating, recording or sensing means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0058—Kind of property studied
- G01N2203/0092—Visco-elasticity, solidification, curing, cross-linking degree, vulcanisation or strength properties of semi-solid materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/0202—Control of the test
- G01N2203/0212—Theories, calculations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/025—Geometry of the test
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0014—Type of force applied
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/08—Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic means
- G01B7/004—Measuring arrangements characterised by the use of electric or magnetic means for measuring coordinates of points
- G01B7/008—Measuring arrangements characterised by the use of electric or magnetic means for measuring coordinates of points using coordinate measuring machines
- G01B7/012—Contact-making feeler heads therefor
- G01B7/016—Constructional details of contacts
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N11/00—Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
- G01N11/10—Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q60/00—Particular type of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
- G01Q60/24—AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic means
- G01B7/02—Measuring arrangements characterised by the use of electric or magnetic means for measuring length, width or thickness
- G01B7/06—Measuring arrangements characterised by the use of electric or magnetic means for measuring length, width or thickness for measuring thickness
- G01B7/10—Measuring arrangements characterised by the use of electric or magnetic means for measuring length, width or thickness for measuring thickness using magnetic means, e.g. by measuring change of reluctance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables
- G01N27/82—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B5/00—Measuring arrangements characterised by the use of mechanical means
- G01B5/004—Measuring arrangements characterised by the use of mechanical means for measuring coordinates of points
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q30/00—Auxiliary means serving to assist or improve the scanning probe techniques or apparatus, e.g. display or data processing devices
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bhushan | Depth-sensing nanoindentation measurement techniques and applications | |
Li et al. | A review of nanoindentation continuous stiffness measurement technique and its applications | |
Guillonneau et al. | Determination of mechanical properties by nanoindentation independently of indentation depth measurement | |
Gao et al. | Construction and testing of a nanomachining instrument | |
Khan et al. | Atomic force microscopy (AFM) for materials characterization | |
Achanta et al. | Friction mechanisms at the micro-scale | |
Li et al. | Experimental studies on relationships between the electron work function, adhesion, and friction for 3d transition metals | |
Beake et al. | Deformation of Si (100) in spherical contacts—Comparison of nano-fretting and nano-scratch tests with nano-indentation | |
Lu et al. | Nanoindentation hardness tests using a point contact microscope | |
Wang et al. | Principle and methods of nanoindentation test | |
Bhushan | Wear and mechanical characterisation on micro-to picoscales using AFM | |
Farmakovskaya et al. | Application of the spherical indenter for determination of the elastic modulus of coatings | |
Beake et al. | Microtribology: new tools to fill measurement gap | |
Basire et al. | Determination of viscoelastic moduli at a submicrometric scale | |
Han et al. | Calibration of effective spring constants of colloidal probes using reference cantilever method | |
Randall et al. | Nanoscratch tester for thin film mechanical properties characterization | |
Zhang et al. | Is the trend of Stribeck curves followed by nano-lubrication with molecularly thin liquid lubricant films? | |
Ignatovich et al. | Material surface layer damage estimation for cyclic loading conditions using the nanoindenting and nanoscratching techniques | |
Liu et al. | Characterisation of engineered surfaces by a novel four-in-one tribological probe microscope | |
Beake et al. | Accelerated nano-fretting testing of Si (1 0 0) | |
Li et al. | Exploring the application of the Kelvin method in studying the history prior to wear and the onset of wear | |
Tian et al. | Structure design and experimental investigation of a multi-function stylus profiling system for characterization of engineering surfaces at micro/nano scales | |
Liu et al. | Frictional forces between a diamond stylus and specimens at low load | |
Bassani et al. | Nanoindentation with AFM | |
Li et al. | Time-dependent mechanical properties and tribological behavior of magnetic tapes |