Basu et al., 2017 - Google Patents
Temperature and Strain Sensitivity of Two-Mode Interference and Waveguide DispersionBasu et al., 2017
- Document ID
- 1722260284814452647
- Author
- Basu S
- Limberger H
- Publication year
- Publication venue
- 2017 European Conference on Optical Communication (ECOC)
External Links
Snippet
Two-mode interference and fibre Bragg grating were used to characterize the strain and temperature sensitivity of a few-mode fibre around the group velocity equalization wavelength. The sensitivity increase near the group velocity equalisation wavelength was …
- 230000035945 sensitivity 0 title abstract description 17
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/02—Optical fibre with cladding with or without a coating
- G02B6/02057—Optical fibre with cladding with or without a coating comprising gratings
- G02B6/02076—Refractive index modulation gratings, e.g. Bragg gratings
- G02B6/0208—Refractive index modulation gratings, e.g. Bragg gratings characterised by their structure, wavelength response
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/293—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
- G02B6/29346—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
- G02B6/2935—Mach-Zehnder configuration, i.e. comprising separate splitting and combining means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress in general
- G01L1/24—Measuring force or stress in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infra-red, visible light, ultra-violet
- G01L1/242—Measuring force or stress in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infra-red, visible light, ultra-violet the material being an optical fibre
- G01L1/246—Measuring force or stress in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infra-red, visible light, ultra-violet the material being an optical fibre using integrated gratings, e.g. Bragg gratings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/10—Light guides of the optical waveguide type
- G02B6/12—Light guides of the optical waveguide type of the integrated circuit kind
- G02B6/12007—Light guides of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
- G02B6/12009—Light guides of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/10—Light guides of the optical waveguide type
- G02B6/12—Light guides of the optical waveguide type of the integrated circuit kind
- G02B2006/12083—Constructional arrangements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/293—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
- G02B6/29304—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
- G02B6/29316—Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide
- G02B6/29317—Light guides of the optical fibre type
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light
- G01D5/268—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light using optical fibres
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gao et al. | A dual-parameter fiber sensor based on few-mode fiber and fiber Bragg grating for strain and temperature sensing | |
Liu et al. | High-sensitivity strain sensor implemented by hybrid cascaded interferometers and the Vernier-effect | |
Hu et al. | Photonic crystal fiber strain sensor based on modified Mach–Zehnder interferometer | |
EP0023345B1 (en) | Optical sensing system | |
US9019482B2 (en) | Optical device with fiber Bragg grating and narrowband optical source | |
US8797540B2 (en) | Slow-light fiber Bragg grating sensor | |
Zhang et al. | An optical fiber strain sensor by using of taper based TCF structure | |
Zhang et al. | High-sensitivity strain and temperature simultaneous measurement sensor based on multimode fiber chirped long-period grating | |
Guan et al. | Tilted long-period fiber grating strain sensor based on dual-peak resonance near PMTP | |
Shi et al. | A dual-parameter sensor using a long-period grating concatenated with polarization maintaining fiber in Sagnac loop | |
Yu et al. | Influence of temperature on the refractive index sensor based on a core-offset in-line fiber Mach-Zehnder interferometer | |
Srimannarayana et al. | Fiber Bragg grating and long period grating sensor for simultaneous measurement and discrimination of strain and temperature effects. | |
Kumar et al. | Highly sensitive single-fiber MZI configuration for weight sensing | |
CN209820413U (en) | Optical fiber interferometer | |
Cai et al. | Temperature-insensitive curvature sensor with few-mode-fiber based hybrid structure | |
US20030152304A1 (en) | Passive thermal compensation of all-fiber mach-zehnder interferometer | |
Basu et al. | Temperature and Strain Sensitivity of Two-Mode Interference and Waveguide Dispersion | |
Zawisza et al. | Dual-resonance long-period grating in fiber loop mirror structure for liquid refractive index measurement | |
Jin et al. | Temperature sensor based on a pressure-induced birefringent single-mode fiber loop mirror | |
Zhang et al. | Study of characteristics of fiber Bragg grating with uniaxial crystal material cladding | |
Kadhim et al. | Temperature sensor based on fiber bragg grating (FBG), implementation, evaluation and spectral characterization study | |
Chu et al. | Optical Fiber Refractometer Based on a Long-Period Grating inscribed in a fiber loop mirror | |
Li et al. | Fiber-optic twist sensor based on a tapered fiber Mach-Zehnder interferometer | |
Wang et al. | Experimental and analytical investigation of LP01-LP11 mode interference | |
Qin et al. | Micro-displacement Sensor with Temperature Compensation based on Double-ball Cascade and Fiber Bragg Grating |