[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Özdemir et al., 2004 - Google Patents

An M/MMGI/1/K queuing model for IEEE 802.11 ad hoc networks

Özdemir et al., 2004

View PDF
Document ID
17220364508241805948
Author
Özdemir M
McDonald A
Publication year
Publication venue
Proceedings of the 1st ACM international workshop on Performance evaluation of wireless ad hoc, sensor, and ubiquitous networks

External Links

Snippet

An M/MMGI/1/K queuing model is developed for the analysis of IEEE 802.11 DCF using RTS/CTS. Results are based on arbitrary contention conditions, namely, collision probabilities, transmission probabilities and contention window sizes vary arbitrarily among …
Continue reading at scholar.archive.org (PDF) (other versions)

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • H04W74/0816Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA carrier sensing with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • H04W74/0841Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure with collision treatment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. local area networks [LAN], wide area networks [WAN]
    • H04L12/40Bus networks
    • H04L12/407Bus networks with decentralised control
    • H04L12/413Bus networks with decentralised control with random access, e.g. carrier-sense multiple-access with collision detection (CSMA-CD)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/26Monitoring arrangements; Testing arrangements
    • H04L12/2602Monitoring arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/54Store-and-forward switching systems
    • H04L12/56Packet switching systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchical pre-organized networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0866Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a dedicated channel for access
    • H04W74/0875Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a dedicated channel for access with assigned priorities based access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W28/00Network traffic or resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic regulation in packet switching networks
    • H04L47/10Flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organizing networks, e.g. ad-hoc networks or sensor networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing packet switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance or administration or management of packet switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Application independent communication protocol aspects or techniques in packet data networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W4/00Mobile application services or facilities specially adapted for wireless communication networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field

Similar Documents

Publication Publication Date Title
Chatzimisios et al. Performance analysis of IEEE 802.11 DCF in presence of transmission errors
Garetto et al. Modeling media access in embedded two-flow topologies of multi-hop wireless networks
Carvalho et al. Delay analysis of IEEE 802.11 in single-hop networks
Tickoo et al. A queueing model for finite load IEEE 802.11 random access MAC
Ray et al. Performance of wireless networks with hidden nodes: A queuing-theoretic analysis
Jang et al. IEEE 802.11 saturation throughput analysis in the presence of hidden terminals
Ghadimi et al. An analytical model of delay in multi-hop wireless ad hoc networks
Ma et al. Unsaturated performance of IEEE 802.11 broadcast service in vehicle-to-vehicle networks
Ray et al. On false blocking in RTS/CTS-based multihop wireless networks
Ma et al. Saturation performance of IEEE 802.11 broadcast networks
Özdemir et al. An M/MMGI/1/K queuing model for IEEE 802.11 ad hoc networks
Kumar et al. Throughput analysis of the IEEE 802.11 distributed coordination function considering erroneous channel and capture effects
Chen et al. Saturation performance of IEEE 802.11 broadcast scheme in ad hoc wireless LANs
Ma et al. On the broadcast packet reception rates in one-dimensional MANETs
Ma et al. Reliability and performance of general two-dimensional broadcast wireless network
Lee et al. On use of traditional M/G/1 model for IEEE 802.11 DCF in unsaturated traffic conditions
Alshanyour et al. Three-dimensional Markov chain model for performance analysis of the IEEE 802.11 distributed coordination function
Choi et al. A distributed fair scheduling scheme with a new analysis model in IEEE 802.11 wireless LANs
Oliveira et al. Modelling delay on IEEE 802.11 MAC protocol for unicast and broadcast nonsaturated traffic
Ozdemir et al. A queuing theoretic model for IEEE 802.11 DCF using RTS/CTS
Sudarev et al. Performance analysis of 802.11 CSMA/CA for infrastructure networks under finite load conditions
Margolis et al. Modelling throughput and starvation in 802.11 wireless networks with multiple flows
Jain et al. Performance evaluation of wireless network in presence of hidden node: A queuing theory approach
Ozdemir et al. A queuing model of multi-hop wireless ad hoc network with hidden nodes
Rathod et al. Characterizing the exit process of a non-saturated IEEE 802.11 wireless network