Yu et al., 2012 - Google Patents
An improved DV-Hop localization method in wireless sensor networksYu et al., 2012
- Document ID
- 1725059972534811913
- Author
- Yu W
- Li H
- Publication year
- Publication venue
- 2012 IEEE international conference on computer science and automation engineering (CSAE)
External Links
Snippet
Localization is one of the most important issues in Wireless Sensor Networks (WSNs), especially for the applications requiring the accurate position of the sensed information. The traditional DV-Hop method can be simply implemented in real wireless sensor networks …
- 230000004807 localization 0 title abstract description 42
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/0284—Relative positioning
- G01S5/0289—Relative positioning of multiple transceivers, e.g. in ad hoc networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W4/00—Mobile application services or facilities specially adapted for wireless communication networks
- H04W4/02—Mobile application Services making use of the location of users or terminals, e.g. OMA SUPL, OMA MLP or 3GPP LCS
- H04W4/023—Mobile application Services making use of the location of users or terminals, e.g. OMA SUPL, OMA MLP or 3GPP LCS using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/0205—Details
- G01S5/021—Calibration, monitoring or correction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W4/00—Mobile application services or facilities specially adapted for wireless communication networks
- H04W4/02—Mobile application Services making use of the location of users or terminals, e.g. OMA SUPL, OMA MLP or 3GPP LCS
- H04W4/025—Mobile application Services making use of the location of users or terminals, e.g. OMA SUPL, OMA MLP or 3GPP LCS using location based information parameters
- H04W4/028—Mobile application Services making use of the location of users or terminals, e.g. OMA SUPL, OMA MLP or 3GPP LCS using location based information parameters using historical or predicted position information, e.g. trajectory data
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/0252—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves by comparing measured values with pre-stored measured or simulated values
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/0205—Details
- G01S5/0215—Details interference or multipath issues related to signal reception
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/14—Determining absolute distances from a plurality of spaced points of known location
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/10—Position of receiver fixed by co-ordinating a plurality of position lines defined by path-difference measurements, e.g. omega or decca systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/0257—Hybrid positioning solutions
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W84/00—Network topologies
- H04W84/18—Self-organizing networks, e.g. ad-hoc networks or sensor networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/24—Connectivity information management, e.g. connectivity discovery or connectivity update
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/02—Communication route or path selection, e.g. power-based or shortest path routing
- H04W40/20—Communication route or path selection, e.g. power-based or shortest path routing based on geographic position or location
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yu et al. | An improved DV-Hop localization method in wireless sensor networks | |
Xiao et al. | An RSSI based DV-hop algorithm for wireless sensor networks | |
Lee et al. | A new range-free localization method using quadratic programming | |
Li et al. | A weighted DV-Hop localization scheme for wireless sensor networks | |
Kaur et al. | A survey of recent developments in DV-Hop localization techniques for wireless sensor network | |
Hou et al. | A novel DV-hop localization algorithm for asymmetry distributed wireless sensor networks | |
Sumathi et al. | RSS-based location estimation in mobility assisted wireless sensor networks | |
Reghelin et al. | A decentralized location system for sensor networks using cooperative calibration and heuristics | |
Zhang et al. | An improved DV-Hop localization algorithm based on the node deployment in wireless sensor networks | |
Sayadnavard et al. | Wireless sensor network localization using imperialist competitive algorithm | |
Agashe et al. | Evaluation of dv hop localization algorithm in wireless sensor networks | |
Bao et al. | An improved DV-Hop localization algorithm for wireless sensor networks | |
Liu et al. | A modified DV-Hop localization algorithm for wireless sensor networks | |
Ekberg et al. | A distributed Swarm-Intelligent Localization for sensor networks with mobile nodes | |
Wang et al. | A new improved DV-Hop localization algorithm | |
Huang et al. | Indoor positioning with reference nodes selection in wireless networks | |
Adnan et al. | Effcient and accurate range-based sensor network localization | |
Zhou et al. | Improvement on localization error and adaptability in Dv-hop algorithm | |
Maung et al. | Hybrid RSS-SOM localization scheme for wireless ad hoc and sensor networks | |
Safa et al. | Localization in large scale wireless sensor networks | |
Dai et al. | Improvement of DV-Hop localization algorithms for wireless sensor networks | |
Dana et al. | Localization in ad-hoc networks | |
Kong et al. | A novel localization algorithm based on received signal strength ratio | |
Wu et al. | An empirical study of DV-Hop localization algorithm in random sensor networks | |
Tang et al. | An improved DV-hop localization algorithm for wireless sensor network based on TDOA quantization |