[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Thanachayanont et al., 2002 - Google Patents

Low voltage high Q VHF CMOS transistor-only active inductor

Thanachayanont et al., 2002

Document ID
1719878737704991388
Author
Thanachayanont A
Ngow S
Publication year
Publication venue
The 2002 45th Midwest Symposium on Circuits and Systems, 2002. MWSCAS-2002.

External Links

Snippet

This paper describes circuit topologies that are suitable for realising very high frequency transistor-only active inductors in CMOS technology. Based on a low voltage topology, a novel VHF CMOS active inductor is proposed. The proposed inductor can achieve high Q …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45183Long tailed pairs
    • H03F3/45188Non-folded cascode stages
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45197Pl types
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45278Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using BiFET transistors as the active amplifying circuit
    • H03F3/45282Long tailed pairs
    • H03F3/45291Folded cascode stages
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1237Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator
    • H03B5/124Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a voltage dependent capacitance
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/04Frequency selective two-port networks
    • H03H11/12Frequency selective two-port networks using amplifiers with feedback
    • H03H11/1291Current or voltage controlled filters
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45704Indexing scheme relating to differential amplifiers the LC comprising one or more parallel resonance circuits
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45296Indexing scheme relating to differential amplifiers the AAC comprising one or more discrete capacitive elements, e.g. a transistor coupled as capacitor
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/08Modification of amplifiers to reduce detrimental influences of internal impedances of amplifying elements
    • H03F1/22Modification of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of cascode coupling, i.e. earthed cathode or emitter stage followed by earthed grid or base stage respectively
    • H03F1/223Modification of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of cascode coupling, i.e. earthed cathode or emitter stage followed by earthed grid or base stage respectively with MOSFET's
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1775Parallel LC in shunt or branch path

Similar Documents

Publication Publication Date Title
Thanachayanont CMOS transistor-only active inductor for IF/RF applications
Thanachayanont et al. Low voltage high Q VHF CMOS transistor-only active inductor
KR20070085237A (en) High frequency wireless receiver circuits and methods
Akbari-Dilmaghani et al. A high Q RF CMOS differential active inductor
De Matteis et al. 64 dB dynamic-range 810 μW 90 MHz fully-differential flipped-source-follower analog filter in 28nm-CMOS
Lee et al. A 50–450 MHz Tunable RF Biquad Filter Based on a Wideband Source Follower With> 26 dBm IIP $ _ {3} $,+ 12 dBm P $ _ {1 {\rm dB}} $, and 15 dB Noise Figure
Shao et al. A 1.7–3.6 GHz 20 MHz-Bandwidth Channel-Selection N-Path Passive-LNA Using a Switched-Capacitor-Transformer Network Achieving 23.5 dBm OB-IIP₃ and 3.4–4.8 dB NF
Manjula et al. Design of low power low noise tunable active inductors for multiband RF front end communication circuits
Thanachayanont Low-voltage low-power high-Q CMOS RF bandpass filter
Ben Hammadi et al. RF and microwave reconfigurable bandpass filter design using optimized active inductor circuit
Thanachayanont et al. Class AB VHF CMOS active inductor
Weng et al. An ω 0-Q tunable CMOS active inductor for RF bandpass filters
Chang et al. The design and analysis of a RF CMOS bandpass filter
Shahrabadi Ultrawideband LNA 1960–2019
Saad et al. High-Performance CMOS Tunable Differential Active Inductor for RF applications
Thanachayanont A 1.5-V high-Q CMOS active inductor for IF/RF wireless applications
Thanachayanont A 1.5-V CMOS fully differential inductorless RF bandpass amplifier
Mittal et al. Design and performance analysis of low power fully integrated tunable bandpass filter
Wu et al. CMOS active inductor and its application in RF bandpass filter
Manjula et al. Performance analysis of a low power low noise tunable band pass filter for multiband RF front end
Wang et al. A novel CMOS active inductor with high quality factor, high linearity and mutually independent tuning of inductance and quality factor
Manjula et al. A 1GHz current reuse low noise amplifier with active inductor load
Hota et al. Pseudo-differential active inductor-based modified gilbert cell mixer
Hammadi et al. Design of wide-tuning high-Q differential active inductor for multistandard applications
Hammadi et al. Compact tunable bandpass filter for RF and microwave applications