[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Lin et al., 2002 - Google Patents

A neural fuzzy network for word information processing

Lin et al., 2002

View PDF
Document ID
17090954748651358299
Author
Lin C
Duh F
Liu D
Publication year
Publication venue
Fuzzy Sets and Systems

External Links

Snippet

A neural fuzzy system learning with fuzzy training data is proposed in this study. The system is able to process and learn numerical information as well as word information. At first, we propose a basic structure of five-layered neural network for the connectionist realization of a …
Continue reading at ir.lib.nycu.edu.tw (PDF) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/063Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
    • G06N3/0635Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means using analogue means
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • G06N3/04Architectures, e.g. interconnection topology
    • G06N3/0472Architectures, e.g. interconnection topology using probabilistic elements, e.g. p-rams, stochastic processors
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • G06N3/04Architectures, e.g. interconnection topology
    • G06N3/0454Architectures, e.g. interconnection topology using a combination of multiple neural nets
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • G06N3/08Learning methods
    • G06N3/082Learning methods modifying the architecture, e.g. adding or deleting nodes or connections, pruning
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computer systems based on specific mathematical models
    • G06N7/02Computer systems based on specific mathematical models using fuzzy logic
    • G06N7/04Physical realisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/04Inference methods or devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • G06N99/005Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/12Computer systems based on biological models using genetic models
    • G06N3/126Genetic algorithms, i.e. information processing using digital simulations of the genetic system
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/02Knowledge representation
    • G06N5/022Knowledge engineering, knowledge acquisition
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • G05B13/027Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using neural networks only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • G05B13/0275Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using fuzzy logic only

Similar Documents

Publication Publication Date Title
Lin et al. A neural fuzzy system with fuzzy supervised learning
Jang et al. Neuro-fuzzy modeling and control
Lee et al. Identification and control of dynamic systems using recurrent fuzzy neural networks
Lin et al. A neural fuzzy system with linguistic teaching signals
Abraham Neuro fuzzy systems: State-of-the-art modeling techniques
Melin et al. A hybrid modular neural network architecture with fuzzy Sugeno integration for time series forecasting
Nauck et al. Combining neural networks and fuzzy controllers
Lin et al. Identification and prediction using recurrent compensatory neuro-fuzzy systems
Jagtap et al. Comparison of extreme-ANFIS and ANFIS networks for regression problems
Shen Reinforcement learning for high-level fuzzy Petri nets
Shoorehdeli et al. A novel training algorithm in ANFIS structure
de Campos Souza et al. Fuzzy neural networks based on fuzzy logic neurons regularized by resampling techniques and regularization theory for regression problems
Wang et al. A boosting-based deep neural networks algorithm for reinforcement learning
Shen et al. Supervised and unsupervised learning by using Petri nets
Filiberto et al. A method to build similarity relations into extended Rough Set Theory
Lin et al. A neural fuzzy network for word information processing
Ikemoto et al. Continuous deep Q-learning with a simulator for stabilization of uncertain discrete-time systems
Mosleh Numerical solution of fuzzy linear Fredholm integro-differential equation by\\fuzzy neural network
Terziyska A distributed adaptive neuro-fuzzy network for chaotic time series prediction
Gomide et al. Neurofuzzy controllers
Wang et al. Fuzzy system modeling using linear distance rules
Evmorfopoulos et al. An Adaptive Digital Fuzzy Architecture for Application‐Specific Integrated Circuits
Su Identification of singleton fuzzy models via fuzzy hyperrectangular composite NN
Starczewski et al. Modular type-2 neuro-fuzzy systems
Slim Neuro-fuzzy network based on extended Kalman filtering for financial time series