[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Makhsuci et al., 2023 - Google Patents

A review of Doherty power amplifier and load modulated balanced amplifier for 5G technology

Makhsuci et al., 2023

View PDF
Document ID
17068330045413212262
Author
Makhsuci S
Masoumeh Navidi S
Sanduleanu M
Ismail M
Publication year
Publication venue
International Journal of Circuit Theory and Applications

External Links

Snippet

In this paper, functionality of the Doherty power amplifiers (DPAs) along with their design constraints such as DPA combining techniques are reviewed. This is because power amplifier (PA) is a key building block in the design of fifth generation (5G) communication …
Continue reading at www.researchgate.net (PDF) (other versions)

Classifications

    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0294Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using vector summing of two or more constant amplitude phase-modulated signals
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • H03F3/602Combinations of several amplifiers
    • H03F3/604Combinations of several amplifiers using FET's
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0261Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/211Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • H03F3/2176Class E amplifiers
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • H03F1/565Modifications of input or output impedances, not otherwise provided for using inductive elements
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • H03F3/605Distributed amplifiers
    • H03F3/607Distributed amplifiers using FET's
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/08Modification of amplifiers to reduce detrimental influences of internal impedances of amplifying elements
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/387A circuit being added at the output of an amplifier to adapt the output impedance of the amplifier
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • H03D7/1425Balanced arrangements with transistors
    • H03D7/1441Balanced arrangements with transistors using field-effect transistors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D2200/00Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
    • H03D2200/0041Functional aspects of demodulators
    • H03D2200/0088Reduction of intermodulation, nonlinearities, adjacent channel interference; intercept points of harmonics or intermodulation products

Similar Documents

Publication Publication Date Title
Kodak et al. A 5G 28-GHz common-leg T/R front-end in 45-nm CMOS SOI with 3.7-dB NF and− 30-dBc EVM with 64-QAM/500-MBaud modulation
Asbeck et al. Power amplifiers for mm-wave 5G applications: Technology comparisons and CMOS-SOI demonstration circuits
Mannem et al. A reconfigurable hybrid series/parallel Doherty power amplifier with antenna VSWR resilient performance for MIMO arrays
US7521995B1 (en) Inverted doherty amplifier with increased off-state impedence
Nguyen et al. A compact Ka-band integrated Doherty amplifier with reconfigurable input network
Chappidi et al. Load modulated balanced mm-wave CMOS PA with integrated linearity enhancement for 5G applications
Lv et al. A compact Ka/Q dual-band GaAs MMIC Doherty power amplifier with simplified offset lines for 5G applications
JP2008541648A (en) Integrated Doherty amplifier with high output efficiency
Makhsuci et al. A review of Doherty power amplifier and load modulated balanced amplifier for 5G technology
Rostomyan et al. Synthesis technique for low-loss mm-wave T/R combiners for TDD front-ends
Li et al. A MM-wave current-mode inverse outphasing transmitter front-end: A circuit duality of conventional voltage-mode outphasing
Qunaj et al. A Ka-band Doherty-like LMBA for high-speed wireless communication in 28-nm CMOS
Zhang et al. A millimeter-wave three-way Doherty power amplifier for 5G NR OFDM
Mannem et al. Broadband active load-modulation power amplification using coupled-line baluns: A multifrequency role-exchange coupler Doherty amplifier architecture
CN106664062B (en) Integrated 3-way Doherty amplifier
Zhou et al. Broadband highly efficient Doherty power amplifiers
Kang et al. Highly efficient wideband X‐band MMIC class‐F power amplifier with cascode FP GaN HEMT
Liu et al. A 44–64-GHz mmWave broadband linear Doherty PA in silicon with quadrature hybrid combiner and non-foster impedance tuner
Huang et al. A coupler balun load-modulated power amplifier with extremely wide bandwidth
Cho et al. Ka-band CMOS power amplifier based on transmission line transformers with single-ended Doherty network
Liu et al. A 44 to 64 GHz broadband 90° hybrid Doherty PA with quasi non-foster tuner in 0.13 μm SiGe
Choi et al. Highly linear Ka-band CMOS linear power amplifier using T-shape linearizer with pMOS
Meng et al. A 28-GHz 16-Gb/s high efficiency 16-QAM transmitter in 65-nm CMOS
Grebennikov Multiband Doherty amplifiers for wireless applications
Chen et al. A 28-GHz-band highly linear stacked-FET power amplifier IC with high back-off PAE in 56-nm SOI CMOS