[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Valkama et al., 2010 - Google Patents

Digital signal processing for reducing the effects of RF imperfections in radio devices—An overview

Valkama et al., 2010

Document ID
17057286585519667607
Author
Valkama M
Springer A
Hueber G
Publication year
Publication venue
Proceedings of 2010 IEEE International Symposium on Circuits and Systems

External Links

Snippet

Building compact and low-cost yet flexible and reconfigurable radios for future wireless systems is generally a challenging task. On one hand, the needs for flexibility and re- configurability prevent using dedicated hardware particularly designed and optimized for …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference induced by transmission
    • H04B1/12Neutralising, balancing, or compensation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/26Circuits for superheterodyne receivers
    • H04B1/28Circuits for superheterodyne receivers the receiver comprising at least one semiconductor device having three or more electrodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • H04L27/3845Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier
    • H04L27/3854Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier using a non - coherent carrier, including systems with baseband correction for phase or frequency offset
    • H04L27/3863Compensation for quadrature error in the received signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/0003Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • H03D7/1425Balanced arrangements with transistors
    • H03D7/1441Balanced arrangements with transistors using field-effect transistors
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/16Multiple-frequency-changing
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers

Similar Documents

Publication Publication Date Title
Valkama et al. Digital signal processing for reducing the effects of RF imperfections in radio devices—An overview
US11095326B2 (en) Wide bandwidth digital predistortion system with reduced sampling rate
US10009050B2 (en) Quadrature transmitter, wireless communication unit, and method for spur suppression
US9106304B2 (en) Correction of quadrature errors
US6934341B2 (en) Method and apparatus for plurality signal generation
US7817970B2 (en) Transmitting/receiving device having a polar modulator with variable predistortion
US10419046B2 (en) Quadrature transmitter, wireless communication unit, and method for spur suppression
US8369798B2 (en) Linearized transmitter including a power amplifier
García et al. An adaptive digital method of imbalances cancellation in LINC transmitters
US20100316172A1 (en) Incompressible rf receiver
US7289575B1 (en) Signal processing means
US12149273B2 (en) System and method for a frequency selective receiver
US6784731B2 (en) System and method for reducing amplifier distortion using distortion feedback
Ershadi et al. A 0.5-to-3.5-GHz full-duplex mixer-first receiver with Cartesian synthesized self-interference suppression interface in 65-nm CMOS
Debaillie et al. Calibration of direct-conversion transceivers
Naskas et al. Wideband mmWave transceiver IC for 5G radios
Sadjina et al. Interference mitigation in LTE-CA FDD based on mixed-signal widely linear cancellation
US8150356B2 (en) Split analog/digital polynomial nonlinear term generator with reduced number of analog-to-digital converters
Cetin et al. Living and dealing with RF impairments in communication transceivers
Groe A multimode cellular radio
Allén et al. Digital post-processing based wideband receiver linearization for enhanced spectrum sensing and access
Le et al. LNA linearization solution for direct conversion receiver using under-sampling technique in reference receiver
Xia et al. A blocker-tolerant ZigBee transceiver with on-chip balun and CR/IQ/IIP2 self-calibrations for home automation
Garcia-Hernandez et al. Survey on compensation for analog front end imperfections by means of adaptive digital front end for on-chip OFDM wireless transmitters
Huang et al. Signal processing for RF circuit impairment mitigation