[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Liu et al., 2019 - Google Patents

A low-quiescent current off-chip capacitor-less LDO regulator with UGCC compensation

Liu et al., 2019

Document ID
16730160241800891097
Author
Liu P
Huang S
Duan Q
Zhu Q
Meng Z
Publication year
Publication venue
2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC)

External Links

Snippet

A low quiescent current off-chip capacitor-less low-dropout regulator (CL-LDO) for system on a chip applications is proposed in this study. An error amplifier with embedded unity gain compensation cell (UGCC) circuit is designed to improve both circuit stability and load …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/262Current mirrors using field-effect transistors only
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/30Regulators using the difference between the base-emitter voltages of two bipolar transistors operating at different current densities
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
    • H03F1/302Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters in bipolar transistor amplifiers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/575Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices characterised by the feedback circuit
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/08Modification of amplifiers to reduce detrimental influences of internal impedances of amplifying elements
    • H03F1/22Modification of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of cascode coupling, i.e. earthed cathode or emitter stage followed by earthed grid or base stage respectively
    • H03F1/223Modification of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of cascode coupling, i.e. earthed cathode or emitter stage followed by earthed grid or base stage respectively with MOSFET's
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/34Dc amplifiers in which all stages are dc-coupled
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/30Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor
    • H03F3/3001Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor with field-effect transistors
    • H03F3/3022CMOS common source output SEPP amplifiers
    • H03F3/3023CMOS common source output SEPP amplifiers with asymmetrical driving of the end stage
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers

Similar Documents

Publication Publication Date Title
Garimella et al. Reverse nested Miller compensation using current buffers in a three-stage LDO
Al-Shyoukh et al. A transient-enhanced low-quiescent current low-dropout regulator with buffer impedance attenuation
Joshi et al. A 5.6 μ a wide bandwidth, high power supply rejection linear low-dropout regulator with 68 dB of PSR up to 2 MHz
Kim et al. A capacitorless LDO regulator with fast feedback technique and low-quiescent current error amplifier
Ma et al. A fully integrated LDO with 50-mV dropout for power efficiency optimization
Bu et al. A fully integrated low-dropout regulator with differentiator-based active zero compensation
CN111176358B (en) Low-power-consumption low-dropout linear voltage regulator
CN101105696A (en) Voltage buffer circuit for linear potentiostat
WO2021035707A1 (en) Low-dropout regulator
WO2023005806A1 (en) Ldo circuit having power supply rejection function, chip and communication terminal
Liu et al. A low-quiescent current off-chip capacitor-less LDO regulator with UGCC compensation
Lau et al. Analysis of low-dropout regulator topologies for low-voltage regulation
Han et al. A 340-nA-quiescent 80-mA-load 0.02-fs-FOM active-capacitor-based low-dropout regulator in standard 0.18-μm CMOS
Yu et al. A fast-transient low-dropout regulator (LDO) with Super Class-AB OTA
Bhattacharjee et al. A 0.45 mV/V line regulation, 0.6 V output voltage, reference-integrated, error amplifier-less LDO with a 5-transistor regulation core
Hwang et al. A 0.35 μm CMOS sub-1V low-quiescent-current low-dropout regulator
CN110879629A (en) Low dropout linear voltage stabilizing circuit
Chen et al. A low-dropout regulator with unconditional stability and low quiescent current
Manikandan A feed-forward compensated FVF LDO regulator with no on-chip compensation capacitors
Li et al. A transient-enhanced low dropout regulator with rail to rail dynamic impedance attenuation buffer suitable for commercial design
Saberkari et al. Fast transient response CFA-based LDO regulator
Tan et al. Current-mirror miller compensation: An improved frequency compensation technique for two-stage amplifiers
Park et al. Design techniques for external capacitor-less LDOs with high PSR over wide frequency range
CN115840486A (en) Curvature compensation band gap reference circuit
Liang et al. A 802 nA quiescent current and 100 mA load low-dropout regulator for micro energy harvest system