[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Zhou et al., 2018 - Google Patents

Space-confined vapor deposition synthesis of two dimensional materials

Zhou et al., 2018

View PDF
Document ID
16708845451994504417
Author
Zhou S
Gan L
Wang D
Li H
Zhai T
Publication year
Publication venue
Nano Research

External Links

Snippet

Two dimensional (2D) nanomaterials are promising fundamental building blocks for use in the next-generation semiconductor industry due to their unique geometry and excellent (opto)-electronic properties. However, large scale high quality fabrication of 2D …
Continue reading at www.researchgate.net (PDF) (other versions)

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B31/00Carbon; Compounds thereof
    • C01B31/02Preparation of carbon; Purification; After-treatment
    • C01B31/04Graphite, including modified graphite, e.g. graphitic oxides, intercalated graphite, expanded graphite or graphene
    • C01B31/0438Graphene
    • C01B31/0446Preparation
    • C01B31/0469Preparation by exfoliation
    • C01B31/0476Preparation by exfoliation starting from graphitic oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B31/00Carbon; Compounds thereof
    • C01B31/02Preparation of carbon; Purification; After-treatment
    • C01B31/0206Nanosized carbon materials
    • C01B31/022Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B31/00Carbon; Compounds thereof
    • C01B31/02Preparation of carbon; Purification; After-treatment
    • C01B31/0206Nanosized carbon materials
    • C01B31/0293Other structures, e.g. nano-onions, nano-scrolls, nano-horns, nano-cones or nano-walls
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1606Graphene
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/05Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential- jump barrier or surface barrier multistep processes for their manufacture
    • H01L51/0504Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential- jump barrier or surface barrier multistep processes for their manufacture the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or swiched, e.g. three-terminal devices
    • H01L51/0508Field-effect devices, e.g. TFTs
    • H01L51/0512Field-effect devices, e.g. TFTs insulated gate field effect transistors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/54Material technologies
    • Y02E10/549Material technologies organic PV cells

Similar Documents

Publication Publication Date Title
Zhou et al. Space-confined vapor deposition synthesis of two dimensional materials
Qin et al. Substrates in the synthesis of two-dimensional materials via chemical vapor deposition
Wang et al. Review of borophene and its potential applications
Zhou et al. Booming development of group IV–VI semiconductors: fresh blood of 2D family
Zhao et al. Recent advances in anisotropic two-dimensional materials and device applications
Zheng et al. Recent progress of flexible electronics by 2D transition metal dichalcogenides
Xu et al. Growth of 2D materials at the wafer scale
Gong et al. Electronic and optoelectronic applications based on 2D novel anisotropic transition metal dichalcogenides
Vishnoi et al. 2D elemental nanomaterials beyond graphene
Huang et al. 2D layered group IIIA metal chalcogenides: synthesis, properties and applications in electronics and optoelectronics
Zhang et al. Controlled synthesis of ZrS2 monolayer and few layers on hexagonal boron nitride
Aissa et al. Recent progress in the growth and applications of graphene as a smart material: a review
Li et al. Emerging energy applications of two-dimensional layered transition metal dichalcogenides
Xu et al. Scaling-up atomically thin coplanar semiconductor–metal circuitry via phase engineered chemical assembly
Wang et al. Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition
Jiang Graphene versus MoS2: A short review
Bagheri et al. Phosphorene: a new competitor for graphene
Yan et al. Growth of bilayer graphene on insulating substrates
Choudhary et al. Growth of large-scale and thickness-modulated MoS2 nanosheets
Yu et al. Toward tunable band gap and tunable dirac point in bilayer graphene with molecular doping
Xi et al. Tunable electronic properties of two-dimensional transition metal dichalcogenide alloys: a first-principles prediction
Koski et al. The new skinny in two-dimensional nanomaterials
Lim et al. Inkjet-printed reduced graphene oxide/poly (vinyl alcohol) composite electrodes for flexible transparent organic field-effect transistors
Chen et al. Single-crystal antimonene films prepared by molecular beam epitaxy: selective growth and contact resistance reduction of the 2D material heterostructure
Kim et al. Clean transfer of wafer-scale graphene via liquid phase removal of polycyclic aromatic hydrocarbons