[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Sasai et al., 2023 - Google Patents

Performance limit of fiber-longitudinal power profile estimation methods

Sasai et al., 2023

View PDF
Document ID
16788423613103122964
Author
Sasai T
Yamazaki E
Kisaka Y
Publication year
Publication venue
Journal of Lightwave Technology

External Links

Snippet

This paper presents analytical results on longitudinal power profile estimation (PPE) methods, which visualize signal power evolution in optical fibers at a coherent receiver. The PPE can be formulated as an inverse problem of the nonlinear Schrödinger equation, where …
Continue reading at opg.optica.org (PDF) (other versions)

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2543Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to fibre non-linearities, e.g. Kerr effect
    • H04B10/2557Cross-phase modulation [XPM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07953Monitoring or measuring OSNR, BER or Q
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07951Monitoring or measuring chromatic dispersion or PMD
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/299Signal waveform processing, e.g. reshaping or retiming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/25Distortion or dispersion compensation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; Arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/46Monitoring; Testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3109Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing packet switching networks

Similar Documents

Publication Publication Date Title
Sasai et al. Digital longitudinal monitoring of optical fiber communication link
Sasai et al. Performance limit of fiber-longitudinal power profile estimation methods
Tanimura et al. Fiber-longitudinal anomaly position identification over multi-span transmission link out of receiver-end signals
Johannisson et al. Perturbation analysis of nonlinear propagation in a strongly dispersive optical communication system
EP1241820B1 (en) Method and apparatus for measuring and estimating optical signal to noise ratio in photonic networks
JP4534067B2 (en) Electrical domain compensation of nonlinear effects in optical communication systems.
Szafraniec et al. Performance monitoring and measurement techniques for coherent optical systems
Bononi et al. Cross-phase modulation induced by OOK channels on higher-rate DQPSK and coherent QPSK channels
EP3096470B1 (en) Method and system for nonlinear interference mitigation
EP2676384B1 (en) Characterization of non-ase noise on optical signals
Do et al. Data-aided OSNR estimation for QPSK and 16-QAM coherent optical system
Serena et al. The Gaussian noise model extended to polarization dependent loss and its application to outage probability estimation
Seve et al. Semi-analytical model for the performance estimation of 100Gb/s PDM-QPSK optical transmission systems without inline dispersion compensation and mixed fiber types
US6829549B2 (en) Implementation of a post detection chromatic dispersion compensation transfer function
May et al. Receiver-based experimental estimation of power losses in optical networks
Sasai et al. Closed-form expressions for fiber-nonlinearity-based longitudinal power profile estimation methods
Sasai et al. Linear least squares estimation of fiber-longitudinal optical power profile
Hahn et al. On the spatial resolution of location-resolved performance monitoring by correlation method
Salehiomran et al. Linear and nonlinear noise monitoring in coherent systems using fast BER measurement and neural networks
Dahan et al. Universal virtual lab: A fast and accurate simulation tool for wideband nonlinear DWDM systems
Serena et al. Locating fiber loss anomalies with a receiver-side monitoring algorithm exploiting cross-phase modulation
Sasai Digital longitudinal monitoring of optical transmission link
Tanimura et al. Advanced data-analytics-based fiber-longitudinal monitoring for optical transport networks
Bononi et al. A unified design framework for single-channel dispersion-managed terrestrial systems
de Koster et al. Experimental investigation of nonlinear Fourier transform based fibre nonlinearity characterisation