Kyasanur et al., 2003 - Google Patents
Detection and Handling of MAC Layer Misbehavior in Wireless Networks.Kyasanur et al., 2003
View PDF- Document ID
- 16744985160265557671
- Author
- Kyasanur P
- Vaidya N
- Publication year
- Publication venue
- DSN
External Links
Snippet
Selfish hosts in wireless networks that fail to adhere to the MAC protocol may obtain an unfair share of the channel bandwidth. We present modifications to the IEEE 802.11 backoff mechanism to simplify detection of such selfish hosts. We also present a correction scheme …
- 238000001514 detection method 0 title abstract description 39
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/02—Details
- H04L12/26—Monitoring arrangements; Testing arrangements
- H04L12/2602—Monitoring arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W74/00—Wireless channel access, e.g. scheduled or random access
- H04W74/08—Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
- H04W74/0833—Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
- H04W74/0841—Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure with collision treatment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0015—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing packet switching networks
- H04L43/08—Monitoring based on specific metrics
- H04L43/0852—Delays
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W74/00—Wireless channel access, e.g. scheduled or random access
- H04W74/08—Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
- H04W74/0808—Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
- H04W74/0816—Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA carrier sensing with collision avoidance
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/14—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
- H04L63/1441—Countermeasures against malicious traffic
- H04L63/1458—Denial of Service
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W52/00—Power Management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC [Transmission power control]
- H04W52/18—TPC being performed according to specific parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing packet switching networks
- H04L43/16—Arrangements for monitoring or testing packet switching networks using threshold monitoring
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W84/00—Network topologies
- H04W84/18—Self-organizing networks, e.g. ad-hoc networks or sensor networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchical pre-organized networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. local area networks [LAN], wide area networks [WAN]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W28/00—Network traffic or resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance or administration or management of packet switching networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/24—Connectivity information management, e.g. connectivity discovery or connectivity update
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/02—Communication route or path selection, e.g. power-based or shortest path routing
- H04W40/04—Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kyasanur et al. | Detection and Handling of MAC Layer Misbehavior in Wireless Networks. | |
Kyasanur et al. | Selfish MAC layer misbehavior in wireless networks | |
Zhai et al. | Physical carrier sensing and spatial reuse in multirate and multihop wireless ad hoc networks | |
Ye et al. | Improving spatial reuse of IEEE 802.11 based ad hoc networks | |
Fang et al. | Performance evaluation of a fair backoff algorithm for IEEE 802.11 DFWMAC | |
Ma et al. | A stochastic model for optimizing physical carrier sensing and spatial reuse in wireless ad hoc networks | |
Chang et al. | A general model and analysis of physical layer capture in 802.11 networks | |
Radosavac et al. | Detecting IEEE 802.11 MAC layer misbehavior in ad hoc networks: Robust strategies against individual and colluding attackers | |
Pelechrinis et al. | Ares: an anti-jamming reinforcement system for 802.11 networks | |
Coutinho et al. | Transmission power control-based opportunistic routing for wireless sensor networks | |
Hua et al. | Starvation modeling and identification in dense 802.11 wireless community networks | |
Sang et al. | On link asymmetry and one-way estimation in wireless sensor networks | |
Renofio et al. | On the dynamics of the RPL protocol in AMI networks under jamming attacks | |
Khalaf et al. | Throughput and delay analysis of multihop IEEE 802.11 networks with capture | |
Guang et al. | DREAM: A system for detection and reaction against MAC layer misbehavior in ad hoc networks | |
Stathopoulos et al. | Application-based collision avoidance in wireless sensor networks | |
Yu et al. | A distributed radio channel allocation scheme for WLANs with multiple data rates | |
Xu et al. | Balancing throughput and fairness for TCP flows in multihop ad-hoc networks | |
Romaszko et al. | Cross layer PHY-MAC protocol for wireless static and mobile Ad Hoc networks | |
Richart et al. | Self management of rate, power and carrier-sense threshold for interference mitigation in ieee 802.11 networks | |
Baldo et al. | GORA: Goodput optimal rate adaptation for 802.11 using medium status estimation | |
Kyasanur et al. | Diagnosing and penalizing mac layer misbehavior in wireless networks | |
Bulhões et al. | Collision probability estimation in wireless networks | |
Richart et al. | Rate, power and carrier-sense threshold coordinated management for high-density IEEE 802.11 networks | |
Kas et al. | Utilization-based dynamic scheduling algorithm for wireless mesh networks |