[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Wang et al., 2008 - Google Patents

Long period gratings in air-core photonic bandgap fibers

Wang et al., 2008

View HTML @Full View
Document ID
16625321006687974515
Author
Wang Y
Jin W
Ju J
Xuan H
Ho H
Xiao L
Wang D
Publication year
Publication venue
Optics Express

External Links

Snippet

Long period fiber gratings in hollow-core air-silica photonic bandgap fibers were produced by use of high frequency, short duration, CO2 laser pulses to periodically modify the size, shape and distribution of air holes in the microstructured cladding. The resonant wavelength …
Continue reading at opg.optica.org (HTML) (other versions)

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/02Optical fibre with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02376Longitudinal variation along fibre axis direction, e.g. tapered holes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/02Optical fibre with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02319Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by core or core-cladding interface features
    • G02B6/02338Structured core, e.g. core contains more than one material, non-constant refractive index distribution in core, asymmetric or non-circular elements in core unit, multiple cores, insertions between core and clad
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/02Optical fibre with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02361Longitudinal structures forming multiple layers around the core, e.g. arranged in multiple rings with each ring having longitudinal elements at substantially the same radial distance from the core, having rotational symmetry about the fibre axis
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/02Optical fibre with cladding with or without a coating
    • G02B6/02057Optical fibre with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/0208Refractive index modulation gratings, e.g. Bragg gratings characterised by their structure, wavelength response
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/02Optical fibre with cladding with or without a coating
    • G02B6/02057Optical fibre with cladding with or without a coating comprising gratings
    • G02B6/02066Gratings having a surface relief structure, e.g. repetitive variation in diameter of core or cladding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/02Optical fibre with cladding with or without a coating
    • G02B6/036Optical fibre with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/10Light guides of the optical waveguide type
    • G02B6/12Light guides of the optical waveguide type of the integrated circuit kind
    • G02B6/122Light guides of the optical waveguide type of the integrated circuit kind basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/02Optical fibre with cladding with or without a coating
    • G02B6/02004Optical fibre with cladding with or without a coating characterised by the core effective area or mode field radius
    • G02B6/02009Large effective area or mode field radius, e.g. to reduce nonlinear effects in single mode fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/02Optical fibre with cladding with or without a coating
    • G02B6/024Optical fibre with cladding with or without a coating with polarisation maintaining properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/10Light guides of the optical waveguide type
    • G02B6/107Subwavelength-diameter waveguides, e.g. nanowires
    • GPHYSICS
    • G02OPTICS
    • G02FDEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F2001/3528Non-linear optics for producing a supercontinuum

Similar Documents

Publication Publication Date Title
Wang et al. Long period gratings in air-core photonic bandgap fibers
Kou et al. Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe
Wang et al. Intensity measurement bend sensors based on periodically tapered soft glass fibers
Ma et al. High-performance temperature sensing using a selectively filled solid-core photonic crystal fiber with a central air-bore
Xuan et al. CO 2 laser induced long period gratings in optical microfibers
Ran et al. 193nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing
Warren-Smith et al. Temperature sensing up to 1300 C using suspended-core microstructured optical fibers
Liu et al. Structural long period gratings made by drilling micro-holes in photonic crystal fibers with a femtosecond infrared laser
Wang et al. Simultaneous strain and temperature measurement by cascading few-mode fiber and single-mode fiber long-period fiber gratings
Fan et al. Higher-order diffraction of long-period microfiber gratings realized by arc discharge method
de Matos et al. Liquid-core, liquid-cladding photonic crystal fibers
Yuan et al. Long period fiber grating in two-core hollow eccentric fiber
Yu et al. Tunable dual-core liquid-filled photonic crystal fibers for dispersion compensation
Hiscocks et al. Stable imprinting of long-period gratings in microstructured polymer optical fibre
Jin et al. Two-mode photonic crystal fibers
Wu et al. Mechanism and characteristics of long period fiber gratings in simplified hollow-core photonic crystal fibers
Huy et al. Tilted fiber Bragg grating photowritten in microstructured optical fiber for improved refractive index measurement
Wang et al. Temperature-controlled transformation in fiber types of fluid-filled photonic crystal fibers and applications
Beugin et al. Efficient Bragg gratings in phosphosilicate and germanosilicate photonic crystal fiber
Gerosa et al. In-fiber modal Mach-Zehnder interferometer based on the locally post-processed core of a photonic crystal fiber
Wang et al. Sensitive Mach–Zehnder interferometric sensor based on a grapefruit microstructured fiber by lateral offset splicing
Wang et al. Low-temperature sensitivity periodically tapered photonic crystal-fiber-based refractometer
Yu et al. Selectively liquid-filled photonic crystal fibers for optical devices
Egorova et al. Single-mode all-silica photonic bandgap fiber with 20-μm mode-field diameter
Xuan et al. Hollow-core photonic bandgap fiber polarizer