[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Wycisk et al., 2014 - Google Patents

New developments in proton conducting membranes for fuel cells

Wycisk et al., 2014

View PDF
Document ID
16668385498260208524
Author
Wycisk R
Pintauro P
Park J
Publication year
Publication venue
Current Opinion in Chemical Engineering

External Links

Snippet

Highlights•The key technical challenge for hydrogen/air PEM fuel cells is high proton conductivity at low humidity.•Fluorinated ionomers continue to dominate the PEM fuel cell landscape.•Low EW semi-crystalline PFIA ionomers from 3M Co. show great promise for …
Continue reading at www.academia.edu (PDF) (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/50Fuel cells
    • Y02E60/52Fuel cells characterised by type or design
    • Y02E60/521Proton Exchange Membrane Fuel Cells [PEMFC]
    • Y02E60/522Direct Alcohol Fuel Cells [DAFC]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped of ion-exchange resins Use of macromolecular compounds as anion B01J41/14 or cation B01J39/20 exchangers
    • C08J5/22Films, membranes, or diaphragms
    • C08J5/2206Films, membranes, or diaphragms based on organic and/or inorganic macromolecular compounds

Similar Documents

Publication Publication Date Title
Wycisk et al. New developments in proton conducting membranes for fuel cells
Kim Polymer electrolytes with high ionic concentration for fuel cells and electrolyzers
Ding et al. Enhancing proton conductivity of polybenzimidazole membranes by introducing sulfonate for vanadium redox flow batteries applications
Kraytsberg et al. Review of advanced materials for proton exchange membrane fuel cells
Li et al. Properties investigation of sulfonated poly (ether ether ketone)/polyacrylonitrile acid–base blend membrane for vanadium redox flow battery application
Ren et al. A novel chloromethylated/quaternized poly (sulfone)/poly (vinylidene fluoride) anion exchange membrane with ultra-low vanadium permeability for all vanadium redox flow battery
Wang et al. Acid-base membranes of imidazole-based sulfonated polyimides for vanadium flow batteries
Yee et al. Cost effective cation exchange membranes: A review
Liu et al. Novel sulfonated poly (ether ether keton)/polyetherimide acid-base blend membranes for vanadium redox flow battery applications
Savadogo Emerging membranes for electrochemical systems: Part II. High temperature composite membranes for polymer electrolyte fuel cell (PEFC) applications
Hill et al. Zirconium hydrogen phosphate/disulfonated poly (arylene ether sulfone) copolymer composite membranes for proton exchange membrane fuel cells
Feng et al. High-performance semicrystalline poly (ether ketone)-based proton exchange membrane
Kim et al. Highly reinforced pore-filling membranes based on sulfonated poly (arylene ether sulfone) s for high-temperature/low-humidity polymer electrolyte membrane fuel cells
Dutta et al. Utilization of conducting polymers in fabricating polymer electrolyte membranes for application in direct methanol fuel cells
Meenakshi et al. Chitosan‐polyvinyl alcohol‐sulfonated polyethersulfone mixed‐matrix membranes as methanol‐barrier electrolytes for DMFCs
Li et al. Acid–base blend membranes consisting of sulfonated poly (ether ether ketone) and 5-amino-benzotriazole tethered polysulfone for DMFC
Pu Polymers for PEM fuel cells
Yun et al. Sulfonated poly (2, 6-dimethyl-1, 4-phenylene oxide)(SPPO) electrolyte membranes reinforced by electrospun nanofiber porous substrates for fuel cells
Dong et al. Preparation and properties of sulfonated poly (phthalazinone ether sulfone ketone)/zirconium sulfophenylphosphate/PTFE composite membranes
Gubler et al. Trends for fuel cell membrane development
Kim et al. Nafion–Nafion/polyvinylidene fluoride–Nafion laminated polymer membrane for direct methanol fuel cells
Noh et al. Multilayered hydrocarbon ionomer/PTFE composite electrolytes with enhanced performance for energy conversion devices
WO2009125636A1 (en) Proton conductive polymer electrolyte membrane, process for producing the proton conductive polymer electrolyte membrane, and membrane-electrode assembly and polymer electrolyte fuel cell using the proton conductive polymer electrolyte membrane
Zhu et al. Novel crosslinked membranes based on sulfonated poly (ether ether ketone) for direct methanol fuel cells
JP5189394B2 (en) Polymer electrolyte membrane