[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Gloge, 1972 - Google Patents

Optical power flow in multimode fibers

Gloge, 1972

Document ID
16599805115014629053
Author
Gloge D
Publication year
Publication venue
Bell System Technical Journal

External Links

Snippet

Loss, coupling, and delay differences among the modes of multimode fibers influence their transmission characteristic in a complicated way. An approximation of the modes by a continuum leads to a comprehensive description of these interrelations. We relate the mode …
Continue reading at onlinelibrary.wiley.com (other versions)

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2861Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using fibre optic delay lines and optical elements associated with them, e.g. for use in signal processing, e.g. filtering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/10Light guides of the optical waveguide type
    • G02B6/12Light guides of the optical waveguide type of the integrated circuit kind
    • G02B6/122Light guides of the optical waveguide type of the integrated circuit kind basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/10Light guides of the optical waveguide type
    • G02B6/12Light guides of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/02Optical fibre with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • GPHYSICS
    • G02OPTICS
    • G02FDEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • GPHYSICS
    • G02OPTICS
    • G02FDEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour

Similar Documents

Publication Publication Date Title
Gloge Optical power flow in multimode fibers
Webster et al. A statistical analysis of conditioned launch for gigabit ethernet links using multimode fiber
Miller Optical fiber telecommunications
Neumann Single-mode fibers: fundamentals
Lin Optoelectronic technology and lightwave communications systems
Keck Spatial and temporal power transfer measurements on a low-loss optical waveguide
US20050036737A1 (en) Waveguide lens with multimode interference
Gupta Optoelectronic Devices and Systems
Ghatak et al. I graded index optical waveguides: A review
Gloge Optical waveguide transmission
Wang et al. Structured light signal transmission through clouds
Gloge Optical fibers for communication
Yan et al. Highly stable, flexible delivery of microjoule-level ultrafast pulses in vacuumized anti-resonant hollow-core fibers for active synchronization
JPS62502818A (en) Coherent radiation generation method and device
Cohen et al. Propagation Characteristics of Double‐Mode Fibers
CN111769872B (en) All-fiber dispersion adjusting method and all-fiber dispersion management device
US3785716A (en) Optical waveguide delay line
US20020114568A1 (en) Optical fiber termination collimator and process of manufacture
McGarry et al. Low-loss, compact, fibre-integrated cell for quantum memories
EP1978402A2 (en) Method of manufacturing optical waveguide using optical soliton
Orofino et al. Optical fibers for dispersion in the time domain
Hanaoka et al. Low-loss intersecting grooved waveguides with low/spl Delta/for a self-holding optical matrix switch
Mohammed et al. ANALYSIS OF DISPERSION REDUCTION IN FIBER OPTIC
Khan et al. Low-Loss Coupling from Coated Plano Convex Lens to Single Mode Solid Core Fibers Laser by Lensing Scheme
Gloge Optical fiber theory: Opportunities for advancement abound