Vieira et al., 2018 - Google Patents
Synthesis, electrospinning and in vitro test of a new biodegradable gelatin-based poly (ester urethane urea) for soft tissue engineeringVieira et al., 2018
- Document ID
- 16303747326154940565
- Author
- Vieira T
- Silva J
- Borges J
- Henriques C
- Publication year
- Publication venue
- European Polymer Journal
External Links
Snippet
Biodegradable polyurethanes have been studied as scaffolds for tissue engineering due to their adjustable physico-chemical properties. In this work, we synthesized a biodegradable gelatin-based poly (urethane urea) using polycaprolactone-diol, as soft segment, and …
- 239000008273 gelatin 0 title abstract description 83
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/42—Polycondensates having carboxylic or carbonic ester groups in the main chain
- C08G18/4266—Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
- C08G18/428—Lactides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/2805—Compounds having only one group containing active hydrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/10—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/18—Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/91—Polymers modified by chemical after-treatment
- C08G63/912—Polymers modified by chemical after-treatment derived from hydroxycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/02—Making solutions, dispersions or lattices by other methods than by solution, emulsion or suspension polymerisation techniques
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Vieira et al. | Electrospun biodegradable chitosan based-poly (urethane urea) scaffolds for soft tissue engineering | |
Vieira et al. | Synthesis, electrospinning and in vitro test of a new biodegradable gelatin-based poly (ester urethane urea) for soft tissue engineering | |
Lee et al. | Synthesis and Characterization of Polycaprolactone‐Based Polyurethanes for the Fabrication of Elastic Guided Bone Regeneration Membrane | |
Ng et al. | Preparation and modification of water-blown porous biodegradable polyurethane foams with palm oil-based polyester polyol | |
Mi et al. | Biocompatible, degradable thermoplastic polyurethane based on polycaprolactone-block-polytetrahydrofuran-block-polycaprolactone copolymers for soft tissue engineering | |
Fang et al. | Biodegradable poly (ester urethane) urea elastomers with variable amino content for subsequent functionalization with phosphorylcholine | |
Han et al. | Electrospinning and biocompatibility evaluation of biodegradable polyurethanes based on L‐lysine diisocyanate and L‐lysine chain extender | |
Feng et al. | A novel waterborne polyurethane with biodegradability and high flexibility for 3D printing | |
Shababdoust et al. | Controlled curcumin release from nanofibers based on amphiphilic-block segmented polyurethanes | |
Rahmani et al. | Development of poly (mannitol sebacate)/poly (lactic acid) nanofibrous scaffolds with potential applications in tissue engineering | |
Shahrousvand et al. | Artificial extracellular matrix for biomedical applications: biocompatible and biodegradable poly (tetramethylene ether) glycol/poly (ε-caprolactone diol)-based polyurethanes | |
Wang et al. | The synthesis, characterization and biocompatibility of poly (ester urethane)/polyhedral oligomeric silesquioxane nanocomposites | |
Kishan et al. | Synthesis and characterization of plug-and-play polyurethane urea elastomers as biodegradable matrixes for tissue engineering applications | |
Król et al. | Study of chemical, physico-mechanical and biological properties of 4, 4′-methylenebis (cyclohexyl isocyanate)-based polyurethane films | |
Shah et al. | Electrospinning of L-tyrosine polyurethanes for potential biomedical applications | |
Zenoozi et al. | Synthesis and characterization of biocompatible semi-interpenetrating polymer networks based on polyurethane and cross-linked poly (acrylic acid) | |
Moghanizadeh-Ashkezari et al. | Vitamin C loaded poly (urethane-urea)/ZnAl-LDH aligned scaffolds increase proliferation of corneal keratocytes and up-regulate vimentin secretion | |
Gigli et al. | Novel ether-linkages containing aliphatic copolyesters of poly (butylene 1, 4-cyclohexanedicarboxylate) as promising candidates for biomedical applications | |
Yin et al. | Preparation and properties of biomedical segmented polyurethanes based on poly (ether ester) and uniform-size diurethane diisocyanates | |
Han et al. | Synthesis and characterization of biodegradable polyurethane based on poly (ε-caprolactone) and L-lysine ethyl ester diisocyanate | |
Liu et al. | A mild method for surface-grafting MPC onto poly (ester-urethane) based on aliphatic diurethane diisocyanate with high grafting efficiency | |
Nair et al. | Electrospun biodegradable calcium containing poly (ester‐urethane) urea: Synthesis, fabrication, in vitro degradation, and biocompatibility evaluation | |
Zhang et al. | Effects of large dimensional deformation of a porous structure on stem cell fate activated by poly (l-glutamic acid)-based shape memory scaffolds | |
Guidotti et al. | Biocompatible PBS-based copolymer for soft tissue engineering: Introduction of disulfide bonds as winning tool to tune the final properties | |
Paula et al. | Development of light-degradable poly (urethane-urea) hydrogel films |