[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Sun et al., 2021 - Google Patents

Control efficient power allocation of uplink NOMA in UAV-aided vehicular platooning

Sun et al., 2021

View PDF
Document ID
16380675822585872637
Author
Sun Y
Zheng K
Tang Y
Publication year
Publication venue
IEEE Access

External Links

Snippet

Power allocation in non-orthogonal multiple access (NOMA) systems is essential to avoid multi-user detection failure. However, controlling the uplink transmission power brings extra signaling overhead, especially in dynamic environments. In this paper, we investigate the …
Continue reading at ieeexplore.ieee.org (PDF) (other versions)

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W72/00Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
    • H04W72/12Dynamic Wireless traffic scheduling; Dynamically scheduled allocation on shared channel
    • H04W72/1205Schedule definition, set-up or creation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W72/00Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
    • H04W72/04Wireless resource allocation
    • H04W72/0406Wireless resource allocation involving control information exchange between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W72/00Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation where an allocation plan is defined based on the type of the allocated resource
    • H04W72/0446Wireless resource allocation where an allocation plan is defined based on the type of the allocated resource the resource being a slot, sub-slot or frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organizing networks, e.g. ad-hoc networks or sensor networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W72/00Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
    • H04W72/04Wireless resource allocation
    • H04W72/048Wireless resource allocation where an allocation plan is defined based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W72/00Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
    • H04W72/12Dynamic Wireless traffic scheduling; Dynamically scheduled allocation on shared channel
    • H04W72/1278Transmission of control information for scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W4/00Mobile application services or facilities specially adapted for wireless communication networks
    • H04W4/06Selective distribution or broadcast application services; Mobile application services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W72/00Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
    • H04W72/005Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/06Network architectures or network communication protocols for network security for supporting key management in a packet data network
    • H04L63/065Network architectures or network communication protocols for network security for supporting key management in a packet data network for group communications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W52/00Power Management, e.g. TPC [Transmission Power Control], power saving or power classes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W28/00Network traffic or resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W56/00Synchronization arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks

Similar Documents

Publication Publication Date Title
Luo et al. Software-defined cooperative data sharing in edge computing assisted 5G-VANET
Wu et al. Collaborative learning of communication routes in edge-enabled multi-access vehicular environment
Wang et al. Platoon cooperation in cellular V2X networks for 5G and beyond
Peng et al. SDN-based resource management for autonomous vehicular networks: A multi-access edge computing approach
Azari et al. Risk-aware resource allocation for URLLC: Challenges and strategies with machine learning
Yang et al. Efficient mobility-aware task offloading for vehicular edge computing networks
Cecchini et al. LTEV2Vsim: An LTE-V2V simulator for the investigation of resource allocation for cooperative awareness
Hu et al. Vehicular multi-access edge computing with licensed sub-6 GHz, IEEE 802.11 p and mmWave
Ren et al. Power control in D2D-based vehicular communication networks
Jameel et al. Efficient power-splitting and resource allocation for cellular V2X communications
Masmoudi et al. A survey on radio resource allocation for V2X communication
Cordeschi et al. Reliable adaptive resource management for cognitive cloud vehicular networks
Sun et al. Control efficient power allocation of uplink NOMA in UAV-aided vehicular platooning
Ni et al. Vehicular beacon broadcast scheduling based on age of information (AoI)
Mlika et al. Network slicing for vehicular communications: a multi-agent deep reinforcement learning approach
Wang et al. Self-adaptive clustering and load-bandwidth management for uplink enhancement in heterogeneous vehicular networks
Zhang et al. EVC-TDMA: An enhanced TDMA based cooperative MAC protocol for vehicular networks
Yu Connected vehicles for intelligent transportation systems [guest editorial]
Han et al. Longitudinal control-oriented spectrum sharing based on C-V2X for vehicle platoons
Fan et al. Fuzzy matching learning for dynamic resource allocation in cellular V2X network
Nguyen et al. A joint scheduling and power control scheme for hybrid I2V/V2V networks
Steinmetz et al. Communication analysis for centralized intersection crossing coordination
Gui et al. Spectrum-Energy-Efficient Mode Selection and Resource Allocation for Heterogeneous V2X Networks: A Federated Multi-Agent Deep Reinforcement Learning Approach
Hadded et al. An optimal strategy for collision-free slots allocations in vehicular ad-hoc networks
Yang et al. Task-driven semantic-aware green cooperative transmission strategy for vehicular networks