Li et al., 2016 - Google Patents
Focal construct geometry for high intensity energy dispersive x-ray diffraction based on x-ray capillary opticsLi et al., 2016
- Document ID
- 16358211522673866947
- Author
- Li F
- Liu Z
- Sun T
- Jiang B
- Zhu Y
- Publication year
- Publication venue
- The Journal of Chemical Physics
External Links
Snippet
We presented a focal construct geometry (FCG) method for high intensity energy dispersive X-ray diffraction by utilizing a home-made ellipsoidal single-bounce capillary (ESBC) and a polycapillary parallel X-ray lens (PPXRL). The ESBC was employed to focus the X-rays from …
- 210000001736 Capillaries 0 title abstract description 16
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons
- G01N23/20—Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by using diffraction of the radiation, e.g. for investigating crystal structure; by using reflection of the radiation
- G01N23/207—Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by using diffraction of the radiation, e.g. for investigating crystal structure; by using reflection of the radiation by means of diffractometry using detectors, e.g. using an analysing crystal or a crystal to be analysed in a central position and one or more displaceable detectors in circumferential positions
- G01N23/2076—Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by using diffraction of the radiation, e.g. for investigating crystal structure; by using reflection of the radiation by means of diffractometry using detectors, e.g. using an analysing crystal or a crystal to be analysed in a central position and one or more displaceable detectors in circumferential positions for spectrometry, i.e. using an analysing crystal, e.g. for measuring X-ray fluorescence spectrum of a sample with wavelength-dispersion, i.e. WDXFS
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/07—Investigating materials by wave or particle radiation secondary emission
- G01N2223/076—X-ray fluorescence
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K1/00—Arrangements for handling particles or ionizing radiation, e.g. focusing or moderating
- G21K1/06—Arrangements for handling particles or ionizing radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons
- G01N23/22—Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by measuring secondary emission
- G01N23/223—Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by measuring secondary emission by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons
- G01N23/22—Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by measuring secondary emission
- G01N23/225—Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by measuring secondary emission using electron or ion microprobe or incident electron or ion beam
- G01N23/2251—Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by measuring secondary emission using electron or ion microprobe or incident electron or ion beam with incident electron beam
- G01N23/2252—Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by measuring secondary emission using electron or ion microprobe or incident electron or ion beam with incident electron beam and measuring excited X-rays
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by transmitting the radiation through the material
- G01N23/04—Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by transmitting the radiation through the material and forming a picture
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K2201/00—Arrangements for handling radiation or particles
- G21K2201/06—Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements
- G21K2201/062—Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements the element being a crystal
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K1/00—Arrangements for handling particles or ionizing radiation, e.g. focusing or moderating
- G21K1/02—Arrangements for handling particles or ionizing radiation, e.g. focusing or moderating using diaphragms, collimators
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K2207/00—Particular details of imaging devices or methods using ionizing electromagnetic radiation such as X-rays or gamma rays
- G21K2207/005—Methods and devices obtaining contrast from non-absorbing interaction of the radiation with matter, e.g. phase contrast
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K7/00—Gamma- or X-ray microscopes
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1402541B1 (en) | Wavelength dispersive xrf system using focusing optic for excitation and a focusing monochromator for collection | |
Szlachetko et al. | A von Hamos x-ray spectrometer based on a segmented-type diffraction crystal for single-shot x-ray emission spectroscopy and time-resolved resonant inelastic x-ray scattering studies | |
Park et al. | High-energy Kα radiography using high-intensity, short-pulse lasers | |
Kavčič et al. | Design and performance of a versatile curved-crystal spectrometer for high-resolution spectroscopy in the tender x-ray range | |
US6271534B1 (en) | Device for producing the image of an object using a flux of neutral or charged particles, and an integrated lens for converting such flux of neutral or charged particles | |
JP2005512020A5 (en) | ||
Sun et al. | Measurements of energy dependence of properties of polycapillary x-ray lens by using organic glass as a scatterer | |
Ding et al. | Monolithic polycapillary X-ray optics engineered to meet a wide range of applications | |
Gamboa et al. | Imaging x-ray Thomson scattering spectrometer design and demonstration | |
Sun et al. | Full-field transmission x-ray imaging with confocal polycapillary x-ray optics | |
Kayser et al. | Laboratory-based micro-X-ray fluorescence setup using a von Hamos crystal spectrometer and a focused beam X-ray tube | |
Chow et al. | Focusing polycapillary to reduce parasitic scattering for inelastic x-ray measurements at high pressure | |
Dickinson et al. | A short working distance multiple crystal x-ray spectrometer | |
Do et al. | Foil backlighter development at the OMEGA laser facility for extended x-ray absorption fine structure experiments | |
Stoupin et al. | The multi-optics high-resolution absorption x-ray spectrometer (HiRAXS) for studies of materials under extreme conditions | |
Li et al. | Focal construct geometry for high intensity energy dispersive x-ray diffraction based on x-ray capillary optics | |
Ismail et al. | A von Hamos spectrometer based on highly annealed pyrolytic graphite crystal in tender x-ray domain | |
Zeeshan et al. | In-house setup for laboratory-based x-ray absorption fine structure spectroscopy measurements | |
Kujala et al. | High resolution short focal distance Bent Crystal Laue Analyzer for copper K edge x-ray absorption spectroscopy | |
Xiong et al. | Equipment design and performance characterization of full field x-ray fluorescence (FF-XRF) element distribution imaging system with combined collimating lens (CCL) | |
Kowarik et al. | A novel 3D printed radial collimator for x-ray diffraction | |
Meirer et al. | Grazing exit versus grazing incidence geometry for x-ray absorption near edge structure analysis of arsenic traces | |
Das et al. | Single-pulse (100 ps) extended x-ray absorption fine structure capability at the Dynamic Compression Sector | |
Harada et al. | K-line X-ray fluorescence analysis of high-Z elements | |
Bjeoumikhov et al. | Polycapillary optics for energy dispersive micro x-ray diffractometry |