[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Li et al., 2016 - Google Patents

Focal construct geometry for high intensity energy dispersive x-ray diffraction based on x-ray capillary optics

Li et al., 2016

Document ID
16358211522673866947
Author
Li F
Liu Z
Sun T
Jiang B
Zhu Y
Publication year
Publication venue
The Journal of Chemical Physics

External Links

Snippet

We presented a focal construct geometry (FCG) method for high intensity energy dispersive X-ray diffraction by utilizing a home-made ellipsoidal single-bounce capillary (ESBC) and a polycapillary parallel X-ray lens (PPXRL). The ESBC was employed to focus the X-rays from …
Continue reading at pubs.aip.org (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by using diffraction of the radiation, e.g. for investigating crystal structure; by using reflection of the radiation
    • G01N23/207Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by using diffraction of the radiation, e.g. for investigating crystal structure; by using reflection of the radiation by means of diffractometry using detectors, e.g. using an analysing crystal or a crystal to be analysed in a central position and one or more displaceable detectors in circumferential positions
    • G01N23/2076Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by using diffraction of the radiation, e.g. for investigating crystal structure; by using reflection of the radiation by means of diffractometry using detectors, e.g. using an analysing crystal or a crystal to be analysed in a central position and one or more displaceable detectors in circumferential positions for spectrometry, i.e. using an analysing crystal, e.g. for measuring X-ray fluorescence spectrum of a sample with wavelength-dispersion, i.e. WDXFS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/076X-ray fluorescence
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionizing radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionizing radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by measuring secondary emission
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by measuring secondary emission by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by measuring secondary emission
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by measuring secondary emission using electron or ion microprobe or incident electron or ion beam
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by measuring secondary emission using electron or ion microprobe or incident electron or ion beam with incident electron beam
    • G01N23/2252Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by measuring secondary emission using electron or ion microprobe or incident electron or ion beam with incident electron beam and measuring excited X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by transmitting the radiation through the material and forming a picture
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2201/00Arrangements for handling radiation or particles
    • G21K2201/06Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements
    • G21K2201/062Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements the element being a crystal
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionizing radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionizing radiation, e.g. focusing or moderating using diaphragms, collimators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2207/00Particular details of imaging devices or methods using ionizing electromagnetic radiation such as X-rays or gamma rays
    • G21K2207/005Methods and devices obtaining contrast from non-absorbing interaction of the radiation with matter, e.g. phase contrast
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K7/00Gamma- or X-ray microscopes

Similar Documents

Publication Publication Date Title
EP1402541B1 (en) Wavelength dispersive xrf system using focusing optic for excitation and a focusing monochromator for collection
Szlachetko et al. A von Hamos x-ray spectrometer based on a segmented-type diffraction crystal for single-shot x-ray emission spectroscopy and time-resolved resonant inelastic x-ray scattering studies
Park et al. High-energy Kα radiography using high-intensity, short-pulse lasers
Kavčič et al. Design and performance of a versatile curved-crystal spectrometer for high-resolution spectroscopy in the tender x-ray range
US6271534B1 (en) Device for producing the image of an object using a flux of neutral or charged particles, and an integrated lens for converting such flux of neutral or charged particles
JP2005512020A5 (en)
Sun et al. Measurements of energy dependence of properties of polycapillary x-ray lens by using organic glass as a scatterer
Ding et al. Monolithic polycapillary X-ray optics engineered to meet a wide range of applications
Gamboa et al. Imaging x-ray Thomson scattering spectrometer design and demonstration
Sun et al. Full-field transmission x-ray imaging with confocal polycapillary x-ray optics
Kayser et al. Laboratory-based micro-X-ray fluorescence setup using a von Hamos crystal spectrometer and a focused beam X-ray tube
Chow et al. Focusing polycapillary to reduce parasitic scattering for inelastic x-ray measurements at high pressure
Dickinson et al. A short working distance multiple crystal x-ray spectrometer
Do et al. Foil backlighter development at the OMEGA laser facility for extended x-ray absorption fine structure experiments
Stoupin et al. The multi-optics high-resolution absorption x-ray spectrometer (HiRAXS) for studies of materials under extreme conditions
Li et al. Focal construct geometry for high intensity energy dispersive x-ray diffraction based on x-ray capillary optics
Ismail et al. A von Hamos spectrometer based on highly annealed pyrolytic graphite crystal in tender x-ray domain
Zeeshan et al. In-house setup for laboratory-based x-ray absorption fine structure spectroscopy measurements
Kujala et al. High resolution short focal distance Bent Crystal Laue Analyzer for copper K edge x-ray absorption spectroscopy
Xiong et al. Equipment design and performance characterization of full field x-ray fluorescence (FF-XRF) element distribution imaging system with combined collimating lens (CCL)
Kowarik et al. A novel 3D printed radial collimator for x-ray diffraction
Meirer et al. Grazing exit versus grazing incidence geometry for x-ray absorption near edge structure analysis of arsenic traces
Das et al. Single-pulse (100 ps) extended x-ray absorption fine structure capability at the Dynamic Compression Sector
Harada et al. K-line X-ray fluorescence analysis of high-Z elements
Bjeoumikhov et al. Polycapillary optics for energy dispersive micro x-ray diffractometry