[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Wang et al., 2019 - Google Patents

Capturing semantic and syntactic information for link prediction in knowledge graphs

Wang et al., 2019

Document ID
16291228165059765790
Author
Wang C
Yan M
Yi C
Sha Y
Publication year
Publication venue
The Semantic Web–ISWC 2019: 18th International Semantic Web Conference, Auckland, New Zealand, October 26–30, 2019, Proceedings, Part I 18

External Links

Snippet

Link prediction has recently been a major focus of knowledge graphs (KGs). It aims at predicting missing links between entities to complement KGs. Most previous works only consider the triples, but the triples provide less information than the paths. Although some …
Continue reading at link.springer.com (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/30286Information retrieval; Database structures therefor; File system structures therefor in structured data stores
    • G06F17/30386Retrieval requests
    • G06F17/30424Query processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/3061Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F17/30634Querying
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/30861Retrieval from the Internet, e.g. browsers
    • G06F17/30864Retrieval from the Internet, e.g. browsers by querying, e.g. search engines or meta-search engines, crawling techniques, push systems
    • G06F17/30867Retrieval from the Internet, e.g. browsers by querying, e.g. search engines or meta-search engines, crawling techniques, push systems with filtering and personalisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/30943Information retrieval; Database structures therefor; File system structures therefor details of database functions independent of the retrieved data type
    • G06F17/30946Information retrieval; Database structures therefor; File system structures therefor details of database functions independent of the retrieved data type indexing structures
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/30286Information retrieval; Database structures therefor; File system structures therefor in structured data stores
    • G06F17/30587Details of specialised database models
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • G06N99/005Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/20Handling natural language data
    • G06F17/21Text processing
    • G06F17/22Manipulating or registering by use of codes, e.g. in sequence of text characters
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/02Knowledge representation
    • G06N5/022Knowledge engineering, knowledge acquisition
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/04Inference methods or devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computer systems based on specific mathematical models
    • G06N7/005Probabilistic networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F2216/00Indexing scheme relating to additional aspects of information retrieval not explicitly covered by G06F17/30 and subgroups
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation

Similar Documents

Publication Publication Date Title
Wu et al. Fastformer: Additive attention can be all you need
Tian et al. When multi-level meets multi-interest: A multi-grained neural model for sequential recommendation
Liu et al. Context-aware temporal knowledge graph embedding
Li et al. Dual-stream knowledge-preserving hashing for unsupervised video retrieval
Hain et al. Introduction to Rare-Event Predictive Modeling for Inferential Statisticians—A Hands-On Application in the Prediction of Breakthrough Patents
Wang et al. Aspect-based sentiment analysis using interaction matrix and global attention neural network
Dai et al. Meta-graph based attention-aware recommendation over heterogeneous information networks
Dang et al. A study of deep learning-based approaches for session-based recommendation systems
Wang et al. Capturing semantic and syntactic information for link prediction in knowledge graphs
Fu et al. Multiple interaction attention model for open-world knowledge graph completion
Wang et al. Random partition factorization machines for context-aware recommendations
Zhou et al. Topic-attentive encoder-decoder with pre-trained language model for keyphrase generation
Hettige et al. Gaussian embedding of large-scale attributed graphs
Xu et al. Discovering protagonist of sentiment with aspect reconstructed capsule network
Deng et al. Deep learning for knowledge-driven ontology stream prediction
Muthivhi et al. Multi-modal recommendation system with auxiliary information
Han et al. A generalization of recurrent neural networks for graph embedding
Hou et al. Multi-level and Multi-interest User Interest Modeling for News Recommendation
Zhang et al. Introducing Trigger Evolutionary Graph and Event Segment for Event Prediction
Liu et al. Video popularity prediction based on knowledge graph and LSTM network
Wang et al. CLNIE: A Contrastive Learning Based Node Importance Evaluation Method for Knowledge Graphs with Few Labels
Xie et al. Enhancing sentence embedding with dynamic interaction
He et al. Multilevel feature interaction learning for session-based recommendation via graph neural networks
Wołk et al. Implementation and analysis of contextual neural networks in H2O framework
Kumar et al. Automated Text Summarization Using Transformers