Liu et al., 2018 - Google Patents
Quantitative study on the propagation characteristics of MMM signal for stress internal detection of long distance oil and gas pipelineLiu et al., 2018
- Document ID
- 16190766438292505340
- Author
- Liu B
- Ma Z
- He L
- Wang D
- Zhang H
- Ren J
- Publication year
- Publication venue
- NDT & E International
External Links
Snippet
The metal magnetic memory (MMM) detection technology has great application potential in the field of stress internal detection of long distance oil and gas pipeline due to the non- contact online detection to stress damage; however, the scientific significance of the pipeline …
- 238000001514 detection method 0 title abstract description 33
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables
- G01N27/82—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
- G01N27/90—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
- G01N27/9006—Details
- G01N27/9013—Details specially adapted for scanning
- G01N27/902—Details specially adapted for scanning by moving the sensors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables
- G01N27/82—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
- G01N27/90—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
- G01N27/9046—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents by analysing electrical signals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables
- G01N27/82—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
- G01N27/90—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
- G01N27/904—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents and more than one sensor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables
- G01N27/82—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
- G01N27/83—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0058—Kind of property studied
- G01N2203/006—Crack, flaws, fracture or rupture
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/028—Material parameters
- G01N2291/02827—Elastic parameters, strength or force
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by transmitting the radiation through the material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/10—Plotting field distribution; Measuring field distribution
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N17/00—Investigating resistance of materials to the weather, to corrosion, or to light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic means
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Quantitative study on the propagation characteristics of MMM signal for stress internal detection of long distance oil and gas pipeline | |
Shi et al. | Overview of researches on the nondestructive testing method of metal magnetic memory: Status and challenges | |
Wang et al. | A review of three magnetic NDT technologies | |
Wilson et al. | Residual magnetic field sensing for stress measurement | |
Ren et al. | Studies on influences of initial magnetization state on metal magnetic memory signal | |
Tian et al. | Defect classification using a new feature for pulsed eddy current sensors | |
Han et al. | A dual-dipole model for stress concentration evaluation based on magnetic scalar potential analysis | |
Hu et al. | Numerical simulation on magnetic–mechanical behaviors of 304 austenite stainless steel | |
Qu et al. | Study on working stress measurement method for steel bars inside RC bridges based on self-magnetic flux leakage spatial signals | |
Yusa et al. | Application of eddy current inversion technique to the sizing of defects in Inconel welds with rough surfaces | |
Yang et al. | An extended magnetic-stress coupling model of ferromagnetic materials based on energy conservation law and its application in metal magnetic memory technique | |
Sun et al. | A new NDT method based on permanent magnetic field perturbation | |
Sun et al. | A method for identifying geometrical defects and stress concentration zones in MMM technique | |
Fan et al. | Influence of spatial winding distribution of flexible eddy current sensor on quantitative monitoring of subsurface cracks | |
Fan et al. | Research on crack monitoring technology of flexible eddy current array sensor based on TMR sensors | |
Li et al. | Estimation method of yield strength of ferromagnetic materials based on pulsed eddy current testing | |
He et al. | Quantitative study on magnetic-based stress detection and risk evaluation for girth welds with unequal wall thickness of high-grade steel pipelines | |
Liu et al. | Quantitative study on the propagation characteristics of MFL signals of outer surface defects in long-distance oil and gas pipelines | |
Liu et al. | Quantization of magnetic flux leakage internal detection signals for composite defects of gas and oil pipelines | |
Liu et al. | Quantitative study on internal detection signal of weak magnetic stress in oil and gas pipelines based on force-magnetic noncoaxial effect | |
Liu et al. | Research on magnetic memory inspection signal characteristics of multi-parameter coupling pipeline welds | |
Weng et al. | Experiment and numerical simulation of stress detection for oil and gas pipelines based on magnetic stress coupling of pipeline steel | |
Kunshan et al. | Distinguishing welding defects from the stress concentration zone using metal magnetic memory field parameters | |
Su et al. | Invisible damage identification and danger warning for steel box girders using the metal magnetic memory method | |
He et al. | A novel non-contact, magnetic-based stress inspection technology and its application to stress concentration zone diagnosis in pipelines |