[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Jian et al., 2024 - Google Patents

A 73-dB-SNDR 2nd-order noise-shaping SAR with a low-noise time-domain comparator

Jian et al., 2024

Document ID
16140212957604288384
Author
Jian M
Zheng J
Kong X
Sun B
Guo C
Publication year
Publication venue
IEEE Transactions on Circuits and Systems II: Express Briefs

External Links

Snippet

This brief presents a 73-dB-SNDR 2-order noise-shaping successive approximation-register (NS-SAR) analog-to-digital converter (ADC) with a low-noise time-domain comparator. In contrast to most prior works, in which a multi-input voltage-domain comparator was adopted …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/39Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
    • H03M3/436Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the order of the loop filter, e.g. error feedback type
    • H03M3/438Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the order of the loop filter, e.g. error feedback type the modulator having a higher order loop filter in the feedforward path
    • H03M3/454Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the order of the loop filter, e.g. error feedback type the modulator having a higher order loop filter in the feedforward path with distributed feedback, i.e. with feedback paths from the quantiser output to more than one filter stage
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/36Analogue value compared with reference values simultaneously only, i.e. parallel type
    • H03M1/361Analogue value compared with reference values simultaneously only, i.e. parallel type having a separate comparator and reference value for each quantisation level, i.e. full flash converter type
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0617Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
    • H03M1/0675Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy
    • H03M1/0678Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy using additional components or elements, e.g. dummy components
    • H03M1/068Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy using additional components or elements, e.g. dummy components the original and additional components or elements being complementary to each other, e.g. CMOS
    • H03M1/0682Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy using additional components or elements, e.g. dummy components the original and additional components or elements being complementary to each other, e.g. CMOS using a differential network structure, i.e. symmetrical with respect to ground
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/44Sequential comparisons in series-connected stages with change in value of analogue signal
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/39Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
    • H03M3/412Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution
    • H03M3/422Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution having one quantiser only
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0617Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
    • H03M1/0634Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale
    • H03M1/0656Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale in the time domain
    • H03M1/066Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale in the time domain by continuously permuting the elements used, i.e. dynamic element matching
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/14Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit
    • H03M1/145Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit the steps being performed sequentially in series-connected stages
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/14Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit
    • H03M1/16Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit with scale factor modification, i.e. by changing the amplification between the steps
    • H03M1/164Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit with scale factor modification, i.e. by changing the amplification between the steps the steps being performed sequentially in series-connected stages
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0617Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
    • H03M1/0626Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by filtering
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/322Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M3/352Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic
    • H03M3/354Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic at one point, i.e. by adjusting a single reference value, e.g. bias or gain error
    • H03M3/356Offset or drift compensation
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45197Pl types
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/004Reconfigurable analogue/digital or digital/analogue converters
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements

Similar Documents

Publication Publication Date Title
Tang et al. Low-power SAR ADC design: Overview and survey of state-of-the-art techniques
Devarajan et al. A 12-b 10-GS/s interleaved pipeline ADC in 28-nm CMOS technology
Yi et al. A 625kHz-BW, 79.3 dB-SNDR second-order noise-shaping SAR ADC using high-efficiency error-feedback structure
Karmakar et al. A 280$\mu $ W Dynamic Zoom ADC With 120 dB DR and 118 dB SNDR in 1 kHz BW
Wang et al. A 0.022 mm $^{{2}} $98.5 dB SNDR Hybrid Audio $\Delta\Sigma $ Modulator With Digital ELD Compensation in 28 nm CMOS
US11539336B2 (en) Floating inverter amplifier device
Ahmed et al. A 50-MS/s (35 mW) to 1-kS/s (15/spl mu/W) power scaleable 10-bit pipelined ADC using rapid power-on opamps and minimal bias current variation
Tsai et al. A 64-fJ/Conv.-Step Continuous-Time $\Sigma\Delta $ Modulator in 40-nm CMOS Using Asynchronous SAR Quantizer and Digital $\Delta\Sigma $ Truncator
Lyu et al. A 4-GS/s 39.9-dB SNDR 11.7-mW hybrid voltage-time two-step ADC with feedforward ring oscillator-based TDCs
Zhuang et al. A fully dynamic low-power wideband time-interleaved noise-shaping SAR ADC
Jian et al. A 73-dB-SNDR 2nd-order noise-shaping SAR with a low-noise time-domain comparator
Li et al. A 7.3-μ w 13-enob 98-db sfdr noise-shaping sar adc with duty-cycled amplifier and mismatch error shaping
Huang et al. A 1.2 V 2MHz BW 0.084 mm 2 CT ΔΣ ADC with− 97.7 dBc THD and 80dB DR using low-latency DEM
Shen et al. A 6-bit 800-MS/s pipelined A/D converter with open-loop amplifiers
AlMarashli et al. A Nyquist rate SAR ADC employing incremental sigma delta DAC achieving peak SFDR= 107 dB at 80 kS/s
Zhang et al. A second-order noise-shaping SAR ADC using two passive integrators separated by the comparator
Liu et al. A 0-dB STF-Peaking 85-MHz BW 74.4-dB SNDR CT ΔΣ ADC With Unary-Approximating DAC Calibration in 28-nm CMOS
Oh et al. An 85 dB DR 4 MHz BW pipelined noise-shaping SAR ADC with 1–2 MASH structure
Li et al. Radio frequency analog-to-digital converters: Systems and circuits review
Harpe Low-power SAR ADCs: Basic techniques and trends
Zhang et al. A 2.5-mhz bw, 75-dB SNDR noise-shaping SAR ADC with a 1st-order hybrid EF-CIFF structure assisted by unity-gain buffer
Fukazawa et al. A CT 2–2 MASH ΔΣ ADC with multi-rate LMS-based background calibration and input-insensitive quantization-error extraction
Zhuang et al. A fully-dynamic time-interleaved noise-shaping SAR ADC based on CIFF architecture
Santana et al. A 950 MHz clock 47.5 MHz BW 4.7 mW 67 dB SNDR discrete time delta sigma ADC leveraging ring amplification and split-source comparator based quantizer in 28 nm CMOS
Guo et al. A 372 μW 10 kHz-BW 109.2 dB-SNDR Nested Delta-Sigma Modulator Using Hysteresis-Comparison MSB-Pass Quantization