Wolfson et al., 1994 - Google Patents
Automated microburst wind-shear predictionWolfson et al., 1994
View PDF- Document ID
- 16039811163028461938
- Author
- Wolfson M
- Delanoy R
- Forman B
- Hallowell R
- Pawlak M
- Smith P
- Publication year
- Publication venue
- Lincoln Laboratory Journal
External Links
Snippet
Marilyn M. Wolfson, Richard L. Delanoy, Barbara E. Forman, Robert G. Hallowell, Margita L. Pawlak, and Peter D. Smith s We have developed an algorithm that automatically and reliably predicts microburst wind shear. The algorithm, developed as part of the FAA …
- 238000000034 method 0 abstract description 26
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/95—Radar or analogous systems specially adapted for specific applications for meteorological use
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01W—METEOROLOGY
- G01W1/00—Meteorology
- G01W1/10—Devices for predicting weather conditions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/94—Radar or analogous systems specially adapted for specific applications for terrain-avoidance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01W—METEOROLOGY
- G01W1/00—Meteorology
- G01W1/08—Adaptations of balloons, missiles, or aircraft for meteorological purposes; Radiosondes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. correcting range migration errors
- G01S13/9035—Particular SAR processing techniques not provided for elsewhere, e.g. squint mode, doppler beam-sharpening mode, spotlight mode, bistatic SAR, inverse SAR
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/91—Radar or analogous systems specially adapted for specific applications for traffic control
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/74—Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
- G01S13/76—Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01W—METEOROLOGY
- G01W1/00—Meteorology
- G01W1/02—Instruments for indicating weather conditions by measuring two or more variables, e.g. humidity, pressure, temperature, cloud cover, wind speed
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/66—Radar-tracking systems; Analogous systems where the wavelength or the kind of wave is irrelevant
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/04—Display arrangements
- G01S7/06—Cathode-ray tube displays or other two-dimensional or three-dimensional displays
- G01S7/064—Cathode-ray tube displays or other two-dimensional or three-dimensional displays using a display memory for image processing
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
- G05D1/04—Control of altitude or depth
- G05D1/06—Rate of change of altitude or depth
- G05D1/0607—Rate of change of altitude or depth specially adapted for aircraft
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wolfson et al. | Automated microburst wind-shear prediction | |
Wilson et al. | Nowcasting thunderstorms: A status report | |
Hon | Predicting low-level wind shear using 200-m-resolution NWP at the Hong Kong International Airport | |
Evans et al. | The integrated terminal weather system (ITWS) | |
Li et al. | Numerical simulation study of the effect of buildings and complex terrain on the low-level winds at an airport in typhoon situation | |
Hinton et al. | Design of an aircraft vortex spacing system for airport capacity improvement | |
Wolfson et al. | Advanced aviation weather forecasts | |
Williams et al. | Remote turbulence detection using ground-based Doppler weather radar | |
Shen et al. | Aircraft wake recognition and strength classification based on deep learning | |
Goodman | Predicting thunderstorm evolution using ground-based lightning detection networks | |
McGinley et al. | Local data assimilation and analysis for nowcasting | |
Wilson et al. | Nowcasting applications of Doppler radar | |
Hallowell et al. | Wind-shear system cost-benefit analysis | |
Microburst | MICROBURSTS | |
Evans et al. | Weather radar development and application programs | |
Hinton et al. | Development of a wake vortex spacing system for airport capacity enhancement and delay reduction | |
Inglis et al. | Testing of a linear airflow model for flow over complex terrain and subject to stable, structured stratification | |
Nuottokari | Improving meteorological information to air transport | |
Martin et al. | Tropical cyclone observation and forecasting with and without aircraft reconnaissance | |
O'Connor | Demonstration of a Novel 3-D Wind Sensor for Improved Wind Shear Detection for Aviation Operations | |
Barber | Simulations of convectively-induced turbulence based on radar-based climatology of tropical storm types | |
Chen | Using aircraft onboard surveillance and navigation signals for unusual aviation weather detection | |
Koros | Determining convective precipitation using cold cloud top temperatures and it’s impact on aviation industry over western part of Kenya. | |
Kikuchi et al. | Real-Time Prediction of Wind and Atmospheric Turbulence Using Aircraft Flight Data | |
Klinle-Wilson | Integrated Terminal Weather System (ITWS) Demonstration and Validation Operational Test and Evaluation |